论文部分内容阅读
第一部分绪论-纳米微粒的光谱特性及分析应用纳米微粒(量子点)由于尺寸在0.1 nm~100 nm 之间,处于原子簇和宏观物体交换区域内,故具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,从而引起许多奇异的力学、电学、磁学、热学、光学和化学等特性。我们对近年来纳米微粒光谱特性-吸收光谱、荧光光谱及共振散射光谱的研究现状进行了综述,并从其在痕量金属离子和蛋白质方面的分析应用进行了阐述。 第二部分液相卤化银纳米微粒的界面荧光和共振散射光谱特性. 液相卤化银纳米微粒的共振散射光谱和发射光谱表明, AgCl 和AgBr 纳米微粒均在330,400,470 和680nm 处产生4 个共振散射峰,在340,400 和470nm 处产生三个荧光峰。AgI纳米微粒在340,400,437,470 和680n m 产生5 个共振散射峰;除在340n,400 和470nm产生3 个荧光峰外,在434nm 处有一最强的荧光峰。卤化银纳米微粒体系的浓度对共振散射信号的影响与浓度对荧光强度的影响一致,AgCl、AgBr 和AgI 体系的共振散射光信号强度分别约为荧光信号的110、130 和80 倍,即荧光与共振散射之间存在相关性。提出了液相AgX纳米微粒荧光产生机理,解释了荧光与共振散射之间存在相关性的原因。 第三部分Ag (Ⅰ)-DDTC 螯合物微粒体系的光谱特性研究及其分析应用在pH 10.5 的NH3-NH4Cl 缓冲溶液中和氯化十四烷基二甲基苄基銨存在下,Ag (I)与二乙基二硫代氨基甲酸钠(DDTC)可形成较稳定的(Ag-DDTC)n螯合纳米微粒。它在361 nm 产生一个共振散射峰,在464 nm 处产生一个同步散射峰。当激发波长为260 nm 时,它在400和466 nm 处产生两个荧光峰。在一定条件下,Ag (I)浓度在0.043~3.24μg/mL 之间均与共振散射强度I361 nm和荧光强度F400 nm呈线性关系。据此建立了一个检测限为0.010μg/mL Ag的共振散射新方法。该方法应用于照片和定影液废水中微量银的测定,结果满意。 第四部分AuCl4--I-纳米微粒体系的共振散射和荧光光谱研究AuCl4-与I-可形成(AuI)n纳米微粒。当I-浓度较低时,体系呈AuCl4-浅黄色,在约320nm处有一个较强的共振散射峰,在467nm 处有一个同步散射峰;在350nm、400nm、420n 和