论文部分内容阅读
近年来,城市轨道交通飞速发展,有效地解决了由于城市规模不断扩大、城市人口不断增长所带来的城市内交通供需矛盾。安全、高效、绿色是城市轨道交通建设和发展的永恒主题,基于通信的列车控制(Communications Based Train Control,CBTC)是确保城市轨道交通安全运营的关键技术。CBTC系统充分利用现代无线通信技术,将列车和地面设备紧密联系在一起,形成一个完整的闭环控制过程,保障列车安全高效运行。城市轨道交通线路分布在隧道、高架桥和地面,CBTC系统车地通信传输媒介通常采用自由空间、漏泄电缆、漏泄波导等,无线信道复杂,存在信号衰落与干扰的现象。而且,在运营高峰时期,城市轨道交通列车可以达到90s、甚至更小的安全追踪间隔,这对列车安全防护能力和城市轨道交通高效运营能力提出了更高的要求。列车在运行过程中频繁切换,会发生传输时延增大或数据包丢失的情形,降低了CBTC系统车地通信性能,影响CBTC系统中控制信息和表示信息的实时可靠传递,严重时会导致列车实施计划外的常用制动甚至紧急制动,制约了列车运行平稳性和城市轨道交通运营效率的提升。研究表明切换时延是影响CBTC系统车地通信最为关键的因素,切换造成的丢包总数要远远大于正常无线传输导致的丢包数。因此,合理利用通信资源,优化CBTC系统车地通信切换策略,提高车地通信服务质量(Quality of Service,QoS)和可用性,已经成为当前CBTC系统车地通信的主要问题。本文以CBTC系统车地通信为研究对象,综合考虑车地通信和列车控制的关系,从主流无线局域网(Wireless Local Area Networks,WLAN)技术、最新应用的铁路长期演进(Long Term Evolution for Railway,LTE-R)技术、可见光通信(Visible Light Communication,VLC)技术等方面,运用博弈理论对车地通信切换策略进行深入分析和优化研究,旨在充分利用无线通信资源、提高车地通信网络性能、满足列车安全高效运行的要求。本论文的主要创新点如下:(1)根据城市轨道交通线路和运营特征,建立了车地通信和列车控制相结合的模型,分析了列车速度对车地通信切换的影响。结合现场实际工程应用,提出了WLAN环境下频率组合切换算法,利用检测到的频率数目,提前获知目标接入点(Access Point,AP),实现平稳切换;推导出列车速度与切换迟滞参数之间的约束关系,动态调整迟滞参数,满足列车在不同速度下的车地通信要求。(2)针对WLAN环境下的CBTC系统车地通信切换问题,提出了一种采用协作分集技术的列车越区切换算法。利用具有竞争机制的Stackelberg博弈模型,综合考虑WLAN的带宽资源、列车带宽需求、协作分集、参数设置等因素,构建列车连续经过两个无线AP时越区切换的数学模型,为每个AP引入价格和收益参数,通过迭代学习法更新移动节点策略,发挥网络中所有参与者的最大效用。仿真结果验证了该博弈策略最大化网络收益,实现网络资源的合理分配,有效提高了CBTC系统性能。(3)针对WLAN和LTE共存环境下的CBTC系统车地通信切换问题,提出了一种基于价格机制的垂直切换算法。利用拍卖理论,将列车和基站之间的关系以价格的形式考虑,建立了列车偏好和基站偏好的数学模型,以可用的数据传输速率、基站功率分配和货币成本作为判决标准,评估候选节点的处理能力,检测信号强度,在拍卖中动态选择网络。仿真结果验证了该博弈策略能够最大化拍卖双方的总收益,适应车地通信网络的动态变化。(4)针对可见光通信环境下的CBTC系统车地通信切换问题,提出了一种图像式可见光通信切换算法。由于WLAN和LTE环境存在固有的不足,因而VLC的深入研究和应用备受关注,可为多种车地通信网络融合以及互联互通提供一些思路。在分析列车切换过程和可见光通信模型的基础上,提出基于距离的概率算法,确定列车切换时机,以满足信号质量的最大化和较高的切换成功率。仿真结果表明,所提算法在提高信号质量和切换成功率等方面具有较好的效果,更适用于城市轨道交通隧道运营场景。