氟化石墨烯/聚合物功能涂层的防腐性能研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:bafjeght
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业换热设备表面的防腐涂层主要面临如下难题:防腐性能好的涂层传热性能差,传热性能好的涂层防腐性能差。腐蚀是造成换热设备失效的主要原因,而传热性能影响设备的工作效率,制备具有优异防腐性能并兼顾良好传热性能的防护涂层是腐蚀与防护领域的热点课题之一。石墨烯兼顾优异的热学性质和分子不可渗透性,给换热设备防腐涂层的发展带来很大机遇,然而,石墨烯/聚合物复合涂层具有诱导金属基体电偶腐蚀的潜在风险,存在电化学腐蚀促进效应的问题。氟化石墨烯作为石墨烯的衍生物,继承了石墨烯的二维结构,同时具有优异的抗渗透性能、良好的绝缘性、疏水性和较高的导热系数。基于以上特性,本论文提出以全氟改性控制石墨烯导电性和部分氟化改性调控石墨烯氧还原反应(ORR)活性两种策略来抑制石墨烯的电化学腐蚀促进效应,同时大大提高涂层的屏蔽腐蚀防护性能,揭示了氟化石墨烯的腐蚀促进效应的抑制机理。基于氟化石墨烯复合涂层的表面疏水性,进一步研究其在协同提高防腐性能及强化冷凝传热中的作用。主要研究内容和结果如下:(1)全氟化石墨烯的制备及其防腐性能研究。采用液相超声剥离技术制备出了氟含量为59.2 wt.%的全氟化石墨烯(FG)纳米片,由于氟的引入使sp2杂化的碳原子转为sp3杂化,从而调控石墨烯的禁带宽度,FG的电导率由石墨烯的48 S/cm下降至8.3×10-8 S/cm。通过在聚乙烯醇缩丁醛(PVB)涂层中添加0.50wt.%的FG,降低PVB涂层基体的微观孔隙和缺陷,提高涂层的气密性和屏蔽防腐性能,涂层的腐蚀实验寿命延长9倍以上。机理研究表明,绝缘的FG阻断了 FG与铜之间的电偶腐蚀,涂层划伤后不会导致铜基体的腐蚀加速,通过控制导电性能够有效地抑制腐蚀促进效应。(2)氟化改性调控ORR活性抑制石墨烯的腐蚀促进效应。以碳-氟键取代含氧官能团,制备了部分氟化改性石墨烯(PFG),通过调控PFG的氟化程度,降低PFG的ORR电催化活性,抑制电化学腐蚀促进效应。结果表明:制备的PFG具有多层结构,当氟含量增加到1 5.2 wt.%时,PFG的电化学腐蚀促进效应被完全抑制。在PVB涂层中仅添加0.3 wt.%的PFG填料即可显著提高涂层的气密性和屏蔽防腐性能,涂层的腐蚀实验寿命由5d延长至90d以上。(3)氟化石墨烯/环氧超疏水涂层的制备及其增强防腐性能研究。基于氟化石墨烯的低表面能性质构建超疏水表面,利用表面超疏水功能形成空气膜阻止腐蚀介质渗入从而提高涂层的防腐性能。通过表面修饰技术将FG附着在环氧涂层表面,制备了接触角为154°、滚动角为4°的FG/环氧超疏水涂层(FG/ERc),与亲水涂层相比,FG/ERC的防腐性能提升99.6%,涂层电阻提高2个数量级。并且FG/ERc超疏水涂层还具有优异的自清洁性、机械耐磨性和化学稳定性,对换热器表面防腐防垢涂层的制备有重要意义。(4)氟化石墨烯复合涂层协同强化防腐和冷凝传热性能研究。针对换热器涂层的防腐和传热性能兼容性差的问题,基于FG的绝缘、屏蔽、疏水、导热和低表面能特性,构建了导热、防腐、疏水及强化冷凝传热的FG/DH22C复合功能涂层。FG/DH22C涂层的导热系数由0.174提高到0.237 W/(m·K);90℃的天然气冷凝液浸泡实验结果表明,FG/DH22C涂层的实验寿命由15d延长至90d以上,基体的平均腐蚀速率降低3个数量级;FG/DH22C涂层的接触角由83.5°提高到129.9°,表面能由41.6 mJ/m2降低至29.76 mJ/m2;FG/DH22C涂层的冷凝传热系数提高至1.30倍。氟化石墨烯不仅增强了涂层的防腐性能,而且协同强化了冷凝传热过程。
其他文献
小麦叶锈病是由小麦叶锈菌(Puccinia recondite f.sp.tritici)侵染引起的真菌病害,是影响世界小麦生产安全的最重要病害之一,在我国曾发生多次大流行,造成严重的产量损失。培育和利用小麦抗叶锈病品种,是防治小麦叶锈病最为经济、有效和环保的方法。因此,定位和克隆小麦抗叶锈病基因,可以为分子育种提供抗病基因和功能标记,也将为抗病机理研究奠定基础。本研究通过精细定位、图位克隆、EM
肿瘤的化学药物治疗与基因治疗是从不同途径或不同作用机理抑制肿瘤生长,两种治疗共同作用于肿瘤时,可有效提高治疗效果,实现化疗药物和基因联合治疗的关键是将不溶于水的抗肿瘤药物和亲水性带负电荷基因共递送至肿瘤细胞,使二者发挥协同抑制肿瘤的作用。现有的共递送系统还存在血液循环稳定性和肿瘤靶向性差等问题,限制了其临床应用。为此,本论文基于课题组合成的阳离子类脂构建了三种新型共递送系统PTX/PSur/QLD
磁流变致动器具有高弹性、高响应速度以及较好的刚度可调性等优点,在柔性智能器件开发、仿生装备以及生物医疗等领域拥有广泛的应用前景。本文通过优化制备工艺获得合适的磁性微粒和聚合物基体结构,得到了具有优异磁控性能的磁流变致动器,从而实现了其力学性能与磁致动性能的提升,并通过数值建模阐明了磁流变致动器的变形机理。主要研究工作如下:1.利用溶胶-凝胶化方法,以明胶为包覆剂,氧化石墨烯(GO)或多壁碳纳米管(
物联网与人工智能产业的兴起,对低功耗和小型化的传感器(或检测仪)提出了迫切需求。液体痕量分析,通常采用光学或电学的方法。其中,作为光学检测方法的代表,分光光度计具有操作简单、成本低、分析速度快的优势;作为电学检测方法的代表,半导体生物传感器具有低功耗和易集成的优势。分光光度计通常采用比色皿作为样品池,其检测灵敏度主要取决于比色皿的光程长度。比色皿的光程长度等于比色皿的宽度与待测液体折射率的乘积,由
镁合金由于密度低、比强度和比刚度高,以及优异的减振性能等在航空航天、汽车和军工等领域具有广阔的应用价值,但强度不高、高温性能和塑性成形性差,容易发生脆性断裂,限制了其在工业中的广泛应用。近年来,关于不同纳米增强体增强镁基复合材料力学性能的研究日益增多.但是研究主要集中在静动态力学性能实验方面,而在其纳米力学行为、微观增强机理及变形失效模式方面缺少更深层次的理论研究,因此本文基于分子动力学(mole
天然气水合物因其资源储量巨大、能量密度高、燃烧清洁高效,被认为是全球最具潜力的新型替代能源之一。目前中国南海天然气水合物资源储量巨大,其勘探开发研究正进入关键突破阶段,实现天然气水合物资源的安全、高效开采利用将对缓解我国能源紧张、优化能源结构、保障能源安全意义重大。实际天然气水合物资源的开采本质上是多孔介质内伴随相变的传热传质、气水渗流的多场多因素耦合的复杂过程,探明微孔隙尺度气体水合物分解过程传
月球着陆器和返回舱在月、地表面着陆时的冲击响应是影响着陆任务成败的关键。采样返回和载人登月对着陆冲击过程提出更高的要求,冲击载荷需要低于航天员的承受能力,并保证搭载设备和仪器的安全。航天器的安全着陆是登月探测和采样返回的重要保障。着陆过程中航天器与星壤(土壤、月壤等)的相互作用,需同时考虑星壤的非连续特性和航天器结构的连续特性,多介质耦合问题给数值模拟带来困难。为此,本文提出针对航天器着陆过程分析
准确获取水中目标的声辐射特性是目标识别和控制的基础。为获取目标本质的、不受环境影响的声辐射特性,必须在自由声场中测量目标的声辐射特性。虽然常规的声场设施如大的湖泊、水库和消声水池等在实验条件下近似满足自由声场条件,但是这些声场设施存在很多限制和不足,声源在这些声场设施中无法产生理想的自由声场。例如大的湖泊、水库等容易受到天气和水中生物噪声的干扰;而消声水池则在低频测量时难以满足自由场条件等。因此为
热电材料能够通过电子、声子的输运和相互作用实现发电和制冷的功能,是重要的能量转换材料和清洁能源技术的代表。热电材料性能的优劣可以用一个无量纲参数热电优值衡量。优异的热电材料应该同时具备较高的塞贝克系数、电导率以及较低的热导率,但是这三个参数之间的强烈耦合作用给热电材料的设计带来了巨大挑战。压力作为一种调制材料物理化学性质的有效手段,能够实现热、电输运参数的解耦,协同优化功率因子和热导率,提升热电性
随着微纳米加工技术和表面改性技术的提高,沸腾换热强化技术近年来得到了迅速的发展。但由于沸腾换热过程的复杂性,其中的流动换热机理仍远未清晰。为探究核态沸腾过程中近壁面的汽泡动力学行为与加热表面沸腾换热过程间的相互作用,本文首先发展了两相流动-微液层蒸发-壁面传热的流-热耦合分析方法,模拟了单汽泡和双汽泡沸腾过程中汽泡生长过程以及壁面温度的变化,并通过单汽泡沸腾实验验证了微液层蒸发机理的合理性。进一步