【摘 要】
:
这篇文章主要讨论三个问题:第一个问题是框架的冗余,我们分别在有限维Hilbert空间中和一般Hilbert空间中给出衡量框架冗余的方法;第二个问题是提升方案,主要工作是将Wim Swel
论文部分内容阅读
这篇文章主要讨论三个问题:第一个问题是框架的冗余,我们分别在有限维Hilbert空间中和一般Hilbert空间中给出衡量框架冗余的方法;第二个问题是提升方案,主要工作是将Wim Sweldens提出的提升方案推广,并讨论用这种推广后的提升方案去构造M-band小波的可能性;第三个问题是数字水印,主要工作是用基于小波变换的数字水印方法实现共享软件的注册.下面介绍一下该文的组织,该文共分三章:第一章首先给出框架的定义,并解释框架冗余的含义;接着刻画了有限维空间中的序列成为框架的充分必要条件,给出了框架的最优界,并且指出了这种条件下框架的冗余度与该框架的上下界之间的关系;然后我们在没有维数限制的Hilbert空间中讨论了框架的冗余度,通过框架分析算子T的值域空间的正交余空间刻画了框架的冗余度,即Ran(T)<⊥>=Ω,而Ω是衡量序列冗余的集合;最后我们把这种方法用到有限维Hilbert空间中得出非常有意思的结论,即框架的冗余度为:1+/<,n>.第二章主要工作是将Wim Sweldens提出的提升方案推广,并讨论用这种推广后的提升方案去构造M-band小波的可能性.第三章主要工作是用基于小波变换的数字水印方法实现共享软件的注册.
其他文献
CDMA多址通信技术,作为新一代移动通信和无线通信的关键技术,在近10年中得到了非常迅速的发展,几乎被应用到个人通信的各个方面.它具有抗干扰性能好,抗多径衰落能力强,系统容
现代组合投资理论是关于在收益不确定条件下投资行为的理论,它是由美国经济学家Harry Markowitz在1952年首先提出来的.此后,人们做了不懈的研究,将该理论进行推广、改进、发
本文研究了分段连续型延迟微分方程(EPCA)数值解的稳定性。这类方程在物理,控制等许多领域都有广泛的应用。本文应用线性θ-方法和单腿θ-方法,解带有一个延迟项的[t],[t-1],和[t
该文考虑无界区域Rn(n≥1)上有阻尼的GBBM方程u-a△u-b△u+ F(u)+γu=h(x),其中a,b,γ是正常数,△是Laplace算子,是n维梯度算子,F(u)满足适当条件.首先,利用Galerkin方法和对
设B为Banach空间,F:D→B(D B)为Frechet可微算子,x为非线性算子方程F(x)=0的解,若F(x)为奇异线性算子,我们称之为奇异问题.该文我们考虑用非精确的迭代格式求解奇异问题.除了
如果将 k- 连通图 G 中的一条边收缩之后所得到的图仍然是 k- 连通图,则称这条边为 G 的 k -可收缩边. 利用阶至少为5的3连通图存在 3 --可收缩边这一性质,1980年C.Thoma
本文利用带参数的哈密顿及非哈密顿系统的向量场小扰动方法结合定性分析的方法,借助于符号运算系统研究了几类多项式系统的极限环的分支,分布及个数问题.第一章讨论了一类三
对流扩散方程是一类基本的运动方程,它可以用来描述水中和大气中污染物质的分布、流体流动和流体中的传热等众多物理现象,因此研究对流扩散方程的数值解法,寻找一种快速、稳定、
快慢型动力系统广泛存在于实际问题中,有很强的实际背景。其特点是系统的状态变量分为慢状态和快状态两类。系统的主要动态特性由慢状态体现。表现在方程形式上即是微分方程的
用数值计算与分析相结合的方法,我们研究了复域上Brusselator方程过极限环的积分流形的结构,发现此积分流形在通过极限环时先形成一个连通到无穷远的筒形,即其解W(T),Z(T)在T