【摘 要】
:
城市化进程的快速发展带来了人口数量增加与土地资源短缺矛盾,也促使建筑寻求向高空发展,超高层建筑高度不断刷新,可预期的千米级摩天大楼在策划和憧憬。目前,千米级摩天大楼的许多研究领域仍处于探索阶段,有必要开展深入研究,为千米级摩天大楼的建造提供技术支撑。本论文重点关注千米级摩天大楼暖通空调系统设计建造中的室外设计参数选取、能源系统设计策略、系统分区模块式设计方法、烟囱效应的应对策略等方面问题,以期为千
【基金项目】
:
中国建筑股份有限公司科研项目“中国建筑千米级摩天大楼机电研究”(课题编号:CSCEC-2010-Z-01-03);
论文部分内容阅读
城市化进程的快速发展带来了人口数量增加与土地资源短缺矛盾,也促使建筑寻求向高空发展,超高层建筑高度不断刷新,可预期的千米级摩天大楼在策划和憧憬。目前,千米级摩天大楼的许多研究领域仍处于探索阶段,有必要开展深入研究,为千米级摩天大楼的建造提供技术支撑。本论文重点关注千米级摩天大楼暖通空调系统设计建造中的室外设计参数选取、能源系统设计策略、系统分区模块式设计方法、烟囱效应的应对策略等方面问题,以期为千米级摩天大楼暖通空调设计建造提供关键技术支撑和解决方案。首先,通过对区域气象条件进行长期模拟,研究千米级摩天大楼周边垂直气候特征,建立不同高度上室外计算参数的修正方法。按修正后的气象参数计算了不同高度楼层的空调负荷,得到了千米级摩天大楼空调负荷的垂直变化规律。提出千米级摩天大楼高区楼层超低能耗建筑设计理念,模拟分析了室外气候、围护结构、新风热回收对高区空调负荷以及全年能耗的影响。其次,针对千米级摩天大楼竖向高度大、建筑体量巨大、功能复杂等特点,分析了千米级摩天大楼的能源特性。以某千米级摩天大楼为例研究了能源系统方案,探讨了冷热电三联供、蓄能以及太阳能、风能在千米级摩天大楼应用的可行性,提出了千米级摩天大楼的多能互补能源设计策略。再次,分析了超高层建筑的空调水系统、空调风系统、防排烟系统、能源系统,通过合理竖向分区模式,解决超高建筑的作用半径、工作压力、系统传输等问题,优化了设计流程。通过优化千米级摩天大楼管井和机房平面布局,研究了千米级摩天大楼模块化预制立管和预制装配机房优化设计技术。提出了暖通系统分区模块式优化设计方法,为千米级摩天大楼的快速标准化建造提供保障。最后,研究了千米级摩天大楼的热压风压作用原理,分析了热压对不同气候建筑烟囱效应的影响。通过增加建筑围护结构气密性、增加内部水平隔断和垂直隔断、加压抑制等方式,可以起到抑制烟囱效应的作用,提出了抑制烟囱效应的应对策略。本文的研究成果提供了基于气候垂直分布规律的负荷特性计算参数修正方法,为千米级摩天大楼负荷计算与能耗模拟奠定理论基础;多能互补的能源系统设计策略、超高层建筑的低能耗技术可为千米级摩天大楼绿色、节能、低碳设计提供解决方案;暖通系统分区模块式优化设计方法,为实现千米级摩天大楼快速高质量建造提供技术支撑。
其他文献
自工业时代,以技术为摹本的物质世界观抬头,寒地建筑的诗学正面临被工具化和审美化的两难境地:前者对功能的过分强调使寒地建筑桎梏于实用性和经济性之中,后者将寒地建筑抽象为可计算、可操作的视觉效果。在科学的不断置喙和感官的超越追求下,寒地建筑师表现出过度关注建筑形式和技术参数的意识焦虑,致使寒地建筑设计渐显一种刻意制造的倾向,在形式悖论裹挟下龃龉前行。与此同时,对寒地建筑意义和价值的探讨长期缺位,导致目
目前,微型化研究领域的最前沿科学研究和技术应用已经进入纳米时代。纳米尺度的功能结构具有特殊的力学、光学和电子学等特性,随着这些年的不断探索和实践逐渐应用于微机械、微光学、光电子学、生物医疗等领域,并体现出了极广阔的应用前景。超快激光制造技术,特别是飞秒激光直写技术,也在这数十年中,取得了巨大研究进展,成为纳米材料和纳米结构的一种灵活、高效、精密和智能的加工制造方法。然而,受制于光学衍射极限,飞秒激
二维过渡金属硫化物是继石墨烯之后发现的一类新奇的层状材料,具有优异的光学、电学和催化等性质。由于二维过渡金属硫化物具有可见光范围内带隙可调和原子层厚度的结构等特点,而且不易受短沟道效应的影响,在下一代纳米电子器件和光电子学等领域具有广阔的应用前景。尽管二维过渡金属硫化物在物性研究和原型器件研究中已经取得了一定的进展,但是建立完备的物理模型和实现二维过渡金属硫化物的广泛应用仍存在诸多挑战。在物性研究
心脏疾病危害人类健康,是造成人类死亡的主要原因之一,长期以来,心脏疾病研究一直是医学界的重要课题。因为非侵入、经济、便捷灵活的特点,心电图成为了临床上重要的常规检查手段。但是,考虑到心电图的个体性差异和心脏疾病信息分析的复杂性,现有的心律失常自动分类算法在分类准确率等方面的表现并不理想,无法满足大量心电数据辅助诊断的需求。此外,大量重复的心电图识别工作还容易使医生产生疲劳,引发误诊。近年来,随着大
按照《巴黎协定》规定,联合国环境规划署要求全球碳排放量在2020年至2030年必须以每年7.6%的水平下降,否则气候引发的自然灾害发生率和破坏率会大幅增长。减少船舶能源消耗,提高能源使用率,降低碳排放量是目前船舶行业发展的一个重要发展方向和研究目标。随着复合材料螺旋桨的应用越来越广,复合材料螺旋桨的节能减排成为当前研究的重点和难点。桨-舵匹配是一种易实现的节能措施。复合材料的可设计性和桨-舵匹配为
历次震后调查均发现,严格按照现行抗震规范设计的钢筋混凝土(Reinforced Concrete,RC)框架结构,能够实现“大震不倒”的抗震设计目标,但却常常遭受难以修复的严重破坏,在震区造成大量“站立的废墟”,带来难以估量的经济损失。预制预应力自复位(Precast/Prestressed Self-Centering,PPSC)钢筋混凝土框架结构由于主体构件地震损伤轻、震后可较快恢复使用功能的
在巨大的燃油消耗和严峻的环境问题的双重压力下,开发更有效的汽车气动减阻技术显得尤为迫切。被广泛研究的简化Ahmed汽车模型为研究具有高度三维性和复杂性的真实汽车绕流提供了很好的参考。根据车模尾窗倾角()的范围12.5°-30°和大于30°,Ahmed车模尾流可以被分别分为高阻和低阻流态。一方面,先前对于低阻流态的理解十分有限,尤其是对非定常结构及其频率。另一方面,本团队前期研究发现,将位于高阻车模
铌酸锂(Lithium niobate,LiNbO33)是一种集压电、铁电、电光、非线性光学、光折变、声光性能等效应于一体的多功能材料。由于其出色的电光系数和非线性光学系数,LiNbO33被认为是未来光子芯片设计和制备的主要材料。然而,LiNbO33稳定的晶体结构、高熔点、热膨胀系数大、脆性高等物理性质,严重地限制了与其他材料,例如:硅(Silicon,Si)、二氧化硅(Siliocn dioxi
尾缘噪声是翼型自噪声的主要来源,中低雷诺数层流下刚性翼型尾缘易产生高幅值单音噪声,破坏空中、水下航行器的安静性。翼型可变形设计为降低航行器噪声和提高航行器经济性提供了新的途径,具有广阔的应用前景。弹性尾缘是可变形翼型的一种基本形式,结构相对简单。然而,目前对翼型弹性尾缘噪声的产生机制和声学特性的研究十分有限,对不同弹性尾缘形式、结构参数下辐射噪声的变化规律研究亦较少。针对以上问题,本文以NACA0
近年来随着超精密加工制造及精密计量等领域的快速发展,位移测量精度需求逐渐由纳米量级向亚纳米甚至皮米量级过渡。非共光路外差干涉光路由于解决了传统共光路外差干涉光路中几纳米至十几纳米的周期非线性误差,已然成为下一代干涉仪的发展方向。然而,非共光路干涉结构的光路更复杂且光程更长,这导致其比传统共光路干涉结构更容易受到温度的影响,此时镜组热漂移误差则凸显出来,成为制约非共光路外差干涉仪进一步提高测量精度的