论文部分内容阅读
天文台站观测环境的长期监测一直是很重要的研究内容,为正常有效地进行天文观测提供了必不可少的技术支持,于是,如何建立完整高效的站址监测系统便成为了研究人员的研究方向之一。天文观测站址监测系统主要包括了大气视宁度监测、气象信息监测、全天云量监视等等[41],这其中的大气视宁度监测是非常重要的一部分,对评估天文观测台站的观测条件好坏起到了非常重要的作用。大气视宁度一般用大气光学相干长度r0来表述,是现今使用最广泛的体现大气视宁度的参数。测量计算大气光学相干长度r0的方法有很多种,其中最具代表性也应用最广泛的是差分像运动法,该方法通过测量星像相对位置的变化来计算出r0值,能够非常有效地排除掉非大气因素对大气视宁度测量的影响。差分像运动大气视宁度监测仪(Differential Image Motion Monitor,DIMM)就是以此原理来设计研制的,DIMM将单一目标源经过两个子瞳在CCD上成两个星像,通过测量这两个星像相对距离变化的方差来计算大气视宁度参数r0,消除了仪器抖动等非大气因素的影响,使得测量结果更加可靠。目前世界上DIMM的使用已经较为普遍,其作为天文台站监测和天文选址的工具发挥了重要的作用。由于天文台站一般在较偏远的地区或者高原地区,环境气候比较恶劣,于是由人员值守DIMM进行观测就变得非常艰苦,特别是在南极站点,值守观测更加是不现实的。这样一来,将DIMM实现自动化(ADIMM),让其自主进行观测就成为了非常必要的目标。要实现DIMM自动化,需要借助近年来发展迅速的程控自主天文台技术,并以此技术为支撑平台来进行设备开发。程控自主天文台(RoboticAutonomous Observatory,RAO)是一套能够执行各种观测任务,并且能够在任务执行过程中没有任何人为协助的情况下自主适应各种环境变化的望远镜系统,其具有自动、无人的特点。程控自主天文台的技术为差分像运动大气视宁度监测仪的自动化奠定了基础,全自动化也是DIMM发展的一个重要趋势。为了高效地对DIMM设备进行操作控制,采用了一套基于Linux平台的集成化开源程控自主天文台控制系统,远程望远镜控制系统第二版(RemoteTelescope System2nd,RTS2)进行自动DIMM的研究,具有较强的创新性。RTS2系统就是以全自动为开发目标,具有环境自主监测、观测目标自主选择、自主观测、自主适应环境变化等优点。RTS2系统在设计与实现上具有非常强的模块性,能够很方便地启用与关闭其中的某个模块,设备切换快捷,系统响应非常快速。采用RTS2系统来实现ADIMM,能够充分利用这套先进望远镜系统的优点,高效地对硬件设备进行控制,也能够以此掌握RTS2系统的关键技术,实现自主开发自动远镜控制软件技术上的突破。基于RTS2的ADIMM系统,根据其程控自主的特点,在硬件配置上需要具备以下三个部分:环境监测部分,包含了气象站、云量传感器以及圆顶;观测设备部分,包含了主望远镜、寻星镜、相应CCD以及子瞳罩;控制部分,包含了控制计算机、RTS2与所有硬件设备的连接配置。在软件控制上需要具备以下五个部分:自动寻星、指向、自动导星、图像处理与视宁度计算。在以上所示的软硬件包含内容中,环境监测部分中的气象站给RTS2系统提供实时的气象信息,云量传感器给RTS2系统提供实时的云量信息,以这些信息来判断是否打开圆顶开始观测或者关闭圆顶结束观测。观测设备部分中的寻星镜及相应CCD负责辅助望远镜进行精确指向,通过寻星镜CCD先将目标星导至寻星镜视场中央,再通过主望远镜CCD将目标星导至主视场中央,然后主望远镜CCD开始曝光获取DIMM图像。在控制计算机的ubuntu操作系统中安装有RTS2系统,并在RTS2系统中完成了对所有硬件设备的通信连接配置,以便能够使用RTS2对硬件设备进行控制。软件开发部分中的自动寻星功能能够综合一系列因素给所有可观测目标星计算权值,然后选取权值最高的目标星并完成指向,最后开始曝光获取DIMM图像,并执行自动导星,以及图像处理与视宁度计算来获取大气视宁度数据。