【摘 要】
:
主动交通安全管理系统通过实时监控交通状态,识别不安全的交通状态并实施适当的干预措施来降低道路碰撞事故发生的可能。道路实时碰撞风险预测作为其中的关键步骤之一,能够使用实时的交通流状态来预测特定的路段在非常短的时间窗内发生碰撞事故的可能性。传统的道路实时碰撞风险预测的研究多以高速公路或者城市快速路上的追尾碰撞为研究对象,基于特定地点的真实碰撞记录和一定时间片段内聚合后的流量数据,并使用分类或回归模型达
论文部分内容阅读
主动交通安全管理系统通过实时监控交通状态,识别不安全的交通状态并实施适当的干预措施来降低道路碰撞事故发生的可能。道路实时碰撞风险预测作为其中的关键步骤之一,能够使用实时的交通流状态来预测特定的路段在非常短的时间窗内发生碰撞事故的可能性。传统的道路实时碰撞风险预测的研究多以高速公路或者城市快速路上的追尾碰撞为研究对象,基于特定地点的真实碰撞记录和一定时间片段内聚合后的流量数据,并使用分类或回归模型达到目的。然而,这些研究所提出的模型在建模中所使用到的特征变量局限于聚合的常规交通流变量,功能上往往不能区分侧向和纵向的碰撞风险,研究对象也不能包含侧向碰撞更为频繁的互通出入口影响区。因此本文旨在提出一种面向互通出入口影响区,基于行车轨迹和替代安全指标(Surrogate Safety Measures,SSM),区分碰撞类型的路段实时碰撞风险预测模型,研究成果能够为优化相关领域的研究带来新的数据框架使用思路和建模方法。首先,利用基于微波雷达检测器的路侧交通采集平台作为轨迹数据的采集方法,开展了位于高速公路互通出入口影响区的路侧交通观测和采集实验;对采集的车辆点迹数据进行预处理,形成轨迹数据集;引入了将用于路段碰撞风险预测的几种典型SSM,形成包含这些SSM的轨迹数据集。为了从轨迹数据中提取纵向冲突和侧向冲突,提出了一种基于车辆规避行为和时空接近性并区分冲突类型的交通冲突提取方法。该方法以车宽虚拟带的重叠变化作为交互类别识别标准,并结合交通冲突基本理论确定交互对象,在此基础上使用不同的基于交通冲突模型的综合算法来辨别冲突的发生;从轨迹数据集中提取纵向冲突和侧向冲突后,使用非参数Mann-Whitney U检验步析了提取到的冲突事件和其他非冲突事件间特征的差异性。然后,以冲突事件代替碰撞,使用包含冲突标签和SSM特征的轨迹数据集进行数据聚合和集成,形成用于路段碰撞风险预测建模的样本集;针对正负样本不平衡的问题,引入了输出级别、数据级别和算法级别的解决方法,分别检查三个级别方法对模型的优化效果;以尤登指数阈值作为分类阈值,使用最近邻编辑法(Edited Data Set Using Nearest Neighbours,ENN)的欠采样方法平衡后的样本集,建立的XGBoost模型能实现79.71%的查全率、1.23%的误报率和0.9493的AUC面积,这个结果具有比同类研究更好的综合性能。最后,利用优化的建模方法,建立能够区分碰撞类型的路段实时碰撞风险预测模型,模型能够实现97.39%的总体准确率,以0.13%的误报率预测出93.04%的纵向冲突,以0.12%的误报率预测出61.80%的横向冲突;为了进一步解释模型,使用SHAP(SHapley Additive ex Planation)模型解释工具,分别分析了预测两种冲突最为重要的一些特征对模型预测的影响程度和影响方向,以及在此基础上增加对两两特征之间交互作用和在交互作用下对模型影响的分析,为高速公路互通出入口影响区的交通管控措施提供更为具体的理论依据。
其他文献
随着我国经济持续快速发展,城市化进程不断扩大,全国机动车保有量持续增长,其产生的污染问题亦日益受到关注。其中机动车排放量的测算和预测是防治交通污染、提高交通环境管理水平的先行步骤。目前,城市道路布设了大量的交通检测器,但是大气污染物检测器布设相对滞后。基于海量交通流数据进行机动车排放量的测算和预测研究、挖掘海量交通流数据在机动车排放研究中的潜在应用价值,是解决交通污染问题及提高交通环境管理的一个可
随着汽车辅助驾驶技术的发展,车辆的智能化水平不断提升,驾驶人在行车过程中需要承担的驾驶任务和认知负荷出现显著变化。2016年美国汽车工程师学会(SAE)将自动驾驶汽车划分为了6个等级,愿景是实现完全的自动驾驶,但由于自动化技术、法律法规等的限制,短期内也很难实现真正意义上的“无人驾驶”(Level5)。未来较长时间内,自动驾驶汽车仍要面对“人机共驾”的局面,大部分车辆会以“有条件自动驾驶”(Lev
现今已有许多城市运用车路协同等智能交通技术手段,布设城市交通大数据平台来进行城市交通的规划与管理,实现跨区域、跨平台的数据资源共享,打造出完善的交通信息服务体系。目前我国诸多大中型城市都布设有道路交通检测器,并在此基础上运用多源异构检测器的融合结果实现交通状况感知与控制辅助城市交通管理。然而,通过获取道路交通检测器检测结果以进行城市交通管理的手段还存在多源检测器数值不统一、交通检测数据分布密度无法
停车控制交叉口(非信号控制交叉口中的一种)车辆驾驶安全是道路交通安全的重要组成部分,其在智能运输系统管理和控制及智能网联车(CAV)等新兴领域中至关重要。前人的研究多基于主观观测统计分析停车控制交叉口处的车辆驾驶行为,但由于数据及技术限制尚未明确或客观定义和分析停车控制交叉口车辆驾驶行为。轨迹挖掘技术和机器学习技术可以帮助道路安全从业人员了解停车控制交叉口车辆驾驶行为的动态模式。本文旨在通过车辆轨
水润滑尾管轴承是船舶推进系统的重要组成部件,其可靠性、耐磨性和稳定性直接影响船舶航行安全。高聚物材料发展迅速,已大量应用于船舶水润滑尾管轴承制造。然而,高聚物材料在极端运行工况下,摩擦副发生润滑不良的状况,出现严重的摩擦磨损现象,诱导产生显著的振动噪声,在揭示相关的机理并探求解决方案方面仍需开展大量研究。本文聚焦于水润滑高聚物材料尾轴承的摩擦诱导振动噪声行为研究,使用石墨烯纳米片改性高密度聚乙烯复
高速公路合流区是高速公路的瓶颈。通常,在高速公路合流区,匝道车辆驶入加速车道进行加速,同时寻找可接受的间隙换道汇入主道。匝道车辆的换道合流操作会引发合流区主线车辆频繁的换道和让行,从而导致主线车辆速度降低。在高流量情况下,匝道车辆的换道合流行为甚至会产生交通流振荡,从而导致合流区通行效率降低、燃油消耗增加,甚至追尾碰撞等安全事故。自动驾驶与车路协同技术的发展为车辆精细化协同控制提供了可能。在智能网
船舶水润滑轴承作为推进系统的关键部件,因其以水为工作介质而具有绿色环保、安全性高、节省资源和结构简单等优势。但长江水域中泥沙颗粒问题突出,在航行中还存在着热老化严重等问题,这些因素都会导致水润滑轴承材料出现严重的摩擦磨损。长江水域这一特殊环境要求水润滑轴承材料不仅要满足摩擦磨损性能,还应具备良好的耐泥沙性能和耐热老化性能要求。因此,揭示水润滑轴承材料在泥沙工况和热老化工况的摩擦磨损机理,对水润滑轴
液晶是指处于各向同性的液体和具有晶体结构的固体之间的中间相物质,因此它既具有流动性,同时又具有分子的长程有序结构。除了在光学显示方面的重要应用,液晶也被认为是潜在的润滑材料,因为在摩擦过程中,液晶分子能够在摩擦副的近表面形成有序排列的润滑层。在过去的30年里,人们对于液晶材料作为润滑剂开展了大量的研究。其中研究最为广泛的是一种向列型液晶5CB(4-戊基-4’-氰基联苯),其在摩擦过程中的分子有序排
随着我国经济社会的迅猛发展和城镇化建设的不断推进,我国城市规模持续扩张,机动车保有量不断提高。然而,我国在城市交通与土地利用规划方面长期以来都处于脱节的状态,城市综合交通基础设施配置与土地利用形态之间存在大量不协调的问题,尤其体现在区域土地的高密度开发与低承载能力交通系统之间的及区域高承载力交通设施供给与低效土地利用的不协调等方面。实现城市交通与土地利用一体化规划的前提是要理清城市交通与土地利用之
近年来,随着计算机、网络、通信等技术的飞速发展,为水路交通信息化发展奠定了重要基础。航道基础设施是保障水路交通畅通、平安、高效的重要前提,其运行状态的智能监测与预警是交通新基建领域的研究热点。以航标为代表的内河助航设施,标识了内河船舶可航水域边界;随着船岸协同的智能航运发展,其重要性不言而喻。然而,内河航标运行环境复杂,其运动特征受风、浪、流、船舶等多因素影响;航标倾覆、故障、移位、丢失等现象屡见