论文部分内容阅读
悬浮体系纳米TiO2光催化剂具有比表面积大,催化活性高的特点而成为一种应用广泛的光催化剂,但存在着催化剂与催化体系的分离难题。为此,将TiO2负载在空心玻璃球、沸石、活性炭等载体上制备负载型光催化剂,而由于上述载体较小的比表面积,降低了TiO2的负载量和光催化活性。另一方面,TiO2的太阳光利用效率也限制了其在工业生产中的应用。纳米磁性颗粒因其具有较大的比表面积和良好的分离回收特性,将其作为光催化剂的载体可解决悬浮体系中纳米TiO2颗粒难以分离回收的困扰,较之其他载体,磁载TiO2光催化剂已成为新的研究热点。为了进一步提高TiO2光催化剂的光催化活性,拓宽其光谱响应范围,人们通过各种手段对TiO2光催化剂进行改性处理,取得了较大进展。其中等离子体技术在材料制备和改性中的应用,开辟了等离子体材料工艺的新领域。本文采用化学共沉法制备CoFe2O4磁粒子,用TiCl4水解法制备了CoFe2O4/TiOX复合粒子,在100℃烘干,350℃焙烧2小时,制备了负载牢固的核壳型CoFe2O4/TiO2光催化剂,在紫外光源照射下所制备的CoFe2O4/TiO2光催化剂显示出较高的甲基橙降解能力,利用外加磁场很容易将CoFe2O4/TiO2光催化剂和所处理的污水分离,并可循环使用。在解决了纳米TiO2颗粒分离回收难的问题基础上,为进一步拓宽光催化剂可见光谱响应范围、提高太阳光利用率,引入低温等离子体技术修饰CoFe2O4/TiOX制备了CoFe2O4/TiO2纳米复合光催化剂。运用振动样品磁强计(VSM)技术对样品磁性能进行研究,结果表明:等离子体修饰后的光催化材料仍具有较高的饱和磁化强度,在外加磁场作用下可实现催化剂在水中的分离与回收;并利用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、紫外/可见分光光度计(UV-Vis)和傅里叶变换红外光谱仪(FTIR)对所制备样品的物理化学性能进行表征,分析结果表明:等离子体修饰后的复合材料有锐钛矿型TiO2存在;TEM谱图显示磁核CoFe2O4的平均粒径约为20nm,CoFe2O4/TiOX复合粒子的粒径约为30-40nm,TiO2包覆层的厚度为5-10nm。与纯TiO2相比等离子体修饰后CoFe2O4/TiO2样品对光的吸收拓展到整个紫外-可见区,扩大了光谱响应范围;制备出的光催化材料对甲基橙溶液降解的光催化活性评价研究表明:经等离子体修饰后CoFe2O4/TiO2纳米复合光催剂的光催化活性明显提高。