论文部分内容阅读
纳米尺度周期性结构可以对光谱进行目的性、选择性地调节与控制,且采用现有微纳米制造技术制备,在光伏、光电子、传感、探测、无油墨印刷、光热转换器等领域具有广阔应用前景。本文主要针对结构色、防伪及印刷等领域的性能需求,基于纳米尺度周期性结构对可见光光谱进行调控,设计了三种单波长近完美吸收结构和四种宽波段广角吸波结构,并针对其中两种宽波段广角吸波结构开展了实验制备和性能测试。论文的主要研究工作及创新性成果如下:(1)已有单波长吸收器通常基于贵金属材料,成本高。本文采用非贵金属材料,设计了三种单波长吸收结构:第一种,铝覆盖一维介质光栅,通过优化介质光栅的结构参数,在纳米空气凹槽中激发腔共振,实现了特定波长TM偏振光近完美吸收;第二种,位于金属铝基底上的一维层叠光栅,层叠光栅由高折射率介质和金属铝构成,通过将不同偏振光入射激发的电磁场局陷在高折射率光栅层中,实现了偏振不敏感完美吸收;第三种是一维填充式金属铝光栅,光栅凹槽填充介质,通过将不同偏振光入射激发的电磁场局陷在填充介质中,实现了偏振不敏感完美吸收,克服了一维结构偏振敏感的问题,将吸收器复杂度从二维简化至一维。(2)已报道的可见光波段宽带吸收器平均吸收效率低,结构复杂,制程繁冗且大多采用贵金属材料。本文设计了四种宽波段广角吸收结构:第一种,一维金属镍/介质光栅/金属镍,在入射角度0-45°范围内,实现了TM偏振光宽带近完美吸收;第二种,一维填充式金属镍光栅,采用高折射率介质填充金属光栅的方式,实现了整体结构阻抗匹配,针对TM和TE偏振光获得了宽波段高吸收效率;第三种,两维镍金属/介质阵列/镍金属,在入射角度0-45°范围内,实现了偏振不敏感近完美吸收;第四种,两维镍柱阵列,在可见光波段平均吸收效率大于90%。(3)制备了两种宽波段吸收结构:采用紫外连续变频光刻设备结合纳米压印技术,制备了大幅面两维镍金属/介质阵列/镍金属复合纳米结构宽波段吸收器;通过全息正交干涉曝光技术和电铸工艺,制备了两维镍柱阵列宽波段吸收器。并对两种器件的性能进行了测试,验证了理论计算的正确性。