【摘 要】
:
污染物是影响液压元件及系统性能的主要因素之一,通常是密度比液压油大的金属颗粒。旋流器应用离心分离的原理,使不同密度的介质在高速旋转的流场中进行分级筛选。研究旋流器的流场流动规律和污染物旋流分离规律,可以为液压系统污染物分离和去除提供理论基础。旋流器的流场的流动形式复杂,预测旋流器内部的流场特性、颗粒运动轨迹十分困难,所以采用数值分析法与实验法对固液旋流器进行理论分析与结构设计。首先,对旋流器的国内
论文部分内容阅读
污染物是影响液压元件及系统性能的主要因素之一,通常是密度比液压油大的金属颗粒。旋流器应用离心分离的原理,使不同密度的介质在高速旋转的流场中进行分级筛选。研究旋流器的流场流动规律和污染物旋流分离规律,可以为液压系统污染物分离和去除提供理论基础。旋流器的流场的流动形式复杂,预测旋流器内部的流场特性、颗粒运动轨迹十分困难,所以采用数值分析法与实验法对固液旋流器进行理论分析与结构设计。首先,对旋流器的国内外研究现状进行调研,总结理论分析、结构参数分析、数值仿真、实验应用的研究进展。对比不同结构的旋流器模型,
其他文献
空间连杆机构由于具有比较特殊的运动特性,因此其研究价值和应用前景都非常可观。本文以Bennett机构为基础,通过多种组装方式来构建各种空间连杆机构,用以满足其在航空航天、医疗工程、土木工程等相关领域的特殊要求。目前对Bennett机构的机构类型的划分以及机构类型与杆件参数的关系的研究不够充分。因此,本文通过在不同象限选取杆件交错角的方式对Bennett机构进行分类,并采用建立球面指标的方式对不同机
液压系统自诞生以来因为其体积小、重量轻、负载力大、动作准确稳定等优点在工业、风力发电、工程机械以及航空航天等领域得到了广泛的应用。液压泵作为液压系统的动力源,其运行状态直接影响着整个机械设备的正常工作,因此对其进行剩余使用寿命(Remaining Useful Life,RUL)预测具有重要意义。得益于传感器以及数据存储技术的飞速发展,当前已经进入大数据时代,海量监测数据的获取也已愈加轻松,许多基
运动模拟器在军事、科研、工程、武器研发、民用娱乐、医疗康复等领域均发挥着重要作用,涵盖海、陆、空各方面,对一个国家的科技、国防及经济建设等具有长远的战略意义。运动模拟器已经在众多汽车、飞机的仿真测试、船舶模拟、军事训练和娱乐体验等使用场合中,取得较好的模拟效果。本文基于一种具有多转动中心的两转一移3-UPU并联机构,设计出一种3自由度并联运动模拟器,能够完成升降、侧倾、俯仰三种运动,可以用来模拟飞
并联机构的运动依赖于多分支多驱动的共同作用,任何一个分支驱动发生驱动故障问题都会对整个并联机构的运行产生不利影响,如何降低驱动故障对机构的影响需要研究机构的驱动容错性能。因此,机构驱动故障与驱动容错性能问题是并联机器人研究中十分重要的问题。驱动力失效是并联机构主要的驱动故障之一,研究并联机构驱动力失效相应地提高驱动容错性能是十分必要的。本文的研究目的在于利用螺旋理论建立一种可评价分支驱动力失效对并
指向机构是航天航空领域的关键部件,随着航天航空技术的发展,对指向机构运动精度与控制的要求也越来越高。以一种新型3-RRCPR并联指向机构作为研究对象,实现其高精度的运动控制。分析了并联指向机构的运动学反解,构建了关节驱动模型,研究了并联指向机构的控制方法,设计搭建了并联指向机构的硬件系统和软件系统,分别通过软件仿真和实验分析验证控制方法的有效性。首先,基于新型3-RRCPR并联指向机构的构型特点,
传统三维自由弯曲成形机构通过控制弯曲模的空间位姿实现管材的三维弯曲成形。由于三轴系统难以控制弯曲力的方向和弯曲模与管材接触点的位置,因此需要五轴联动确保成形的精度,加大了控制难度和成本。3-PUU并联机构具有绕中间平面任意一点连续转动的运动特性,将这一运动特性与三维自由弯曲成形原理相结合,可以通过控制三轴驱动弯曲模实现复杂空间运动,进而改善传统三轴系统受力问题和受力点位置控制问题。分析了3-PUU
并联指向机构作为一种高精密机械结构,工程应用中对其精度、动态性能及稳定性都有很高的要求。机构的间隙、局部刚度和姿态结构的变化都会使其出现非线性特征,因此研究多种非线性因素影响下的并联机构振动特性具有重要意义。本文将针对复杂空间并联指向机构建立其线性和非线性振动系统模型,结合理论计算和仿真分析对多因素影响下的振动特征进行研究,以掌握其动态特性,主要研究内容如下:首先,针对一种复杂结构的新型3-RRC
轴向柱塞泵作为液压系统的重要组成部分,具有高集成化、控制多样化、转速与负载调节范围大的优点,应用在高压、大流量等场合,它的安全运行往往影响着整个设备的可靠性。由于恶劣环境与复杂工作条件,柱塞泵的运行转速往往是非平稳的,而转速变化也会给特征的提取与可靠性分析制造困难。基于恒转速运行下的传统特征提取方法,如时域、频域、时频域统计指标方法等,由于变转速工况的调制调频影响,也变得不那么适用。所以针对柱塞泵
磁液双悬浮轴承是一种以电磁悬浮为主,静压支承为辅的新型悬浮轴承。在实际运行过程中,一旦发生电磁线圈腐蚀、功率放大电路失效等情况将引起电磁系统失效,导致转子与定子发生碰摩现象,导致导磁套和磁极镀层发生开裂脱落,大幅降低磁液双悬浮轴承的运行可靠性和稳定性。因此本文探索了磁液双悬浮轴承系统碰摩动力学行为,比较了静压支承与传统主动电磁轴承系统中的保护装置的异同点,并对其电磁故障下系统的动力学行为进行了试验
液压伺服阀控对顶缸是一种典型的电液负载模拟器,具有功重比大、频带宽、稳定性好和可靠性高等诸多优点,已经广泛应用于航空、航天、航海和工程机械等领域。当前科学技术的高速发展,对电液负载模拟器的性能提出了更高的要求。目前制约电液负载模拟器动力学性能进一步提升的因素主要有两点:(1)工作介质的可压缩性大,体积弹性模量小,刚度低,且具有明显的力学非线性特征;(2)流体的流量、压力等状态参数的改变引起负载缸的