论文部分内容阅读
随着科学技术的进步,设备的小型化、轻量化成为发展的主流,从而进一步推动着纳米纤维的发展。而静电纺丝技术由于设备简单、纺丝成本低、工艺可控等优点,已成为制备纳米纤维的主要途径。本文以金属硝酸盐为原料,无水乙醇,去离子水以及二甲基甲酰胺(DMF)作为溶剂,聚乙烯吡咯烷酮(PVP)作为黏度剂,采用静电纺丝法和水热法成功制备出CoFe2O4和CoFe2O4/ZnFe2O4纳米纤维和颗粒。利用X射线衍射仪(XRD)扫描电子显微镜(SEM)透射电镜(TEM)和振动样品磁强计(VSM)对CoFe2O4和CoFe2O4/ZnFe2O4纳米纤维和纳米颗粒的结构、微观形貌和磁性能进行表征与研究。(1)通过调节收集筒的转速、电场距离、结构和宽度,可以制备出不同形貌、直径和取向的纳米纤维。这是由于通过控制电场距离,可以改变前驱体的分裂和拉伸时间,得到不同直径的纳米纤维。转鼓的转速会改变前驱体对收集表面的作用力,形成两种不同形貌的CoFe2O4纳米纤维和纳米带。1000 r/min下的纳米纤维和2000 r/min纳米带的Ms和Hc分别为83.77 emu/g,616.11 Oe和75.18emu/g,1145.39 Oe该领域的研究对纳米纤维的生产和应用具有重要意义。(2)分别采用水热法和静电纺丝法制备了CoFe2O4纳米颗粒和定向与非定向纳米纤维。利用滚筒收集装置收集高定向度的纳米纤维。经700℃相同退火后,发现纳米颗粒和纤维具有相似的直径。通过研究CoFe2O4纳米阵列的磁滞回线,发现它们具有很强的各向异性,其中易磁化轴与纤维长轴平行。易磁化轴和难磁化轴的Hc和Mr分别为1330.5 Oe、32.39 emu/g和857.2 Oe、24.8 emu/g。而CoFe2O4纳米颗粒的Hc为979.3 Oe。利用微磁软件模拟了CoFe2O4纳米纤维阵列退磁过程中磁滞回线和磁矩的变化。模拟Hc为1480 Oe,与实验值相近。因此静电纺丝将是一种低成本制备纳米纤维阵列的方法。(3)在不同退火温度下,采用静电纺丝法和水热法制备摩尔比为1:1的CoFe2O4/ZnFe2O4纳米纤维和纳米颗粒复合材料。通过对磁滞回线的分析,发现当样品尺寸小于单畴临界尺寸时,随着退火温度的升高,Ms和Hc逐渐增大。同时还发现纳米纤维具有比纳米颗粒更高的Ms、Hc和Mr这是由于纳米纤维的形状各向异性导致。通过静电纺丝技术,制备出CoFe2O4/ZnFe2O4摩尔比分别为1:0.25,1:0.5,1:0.75的复合材料。发现当比例为1:0.25时其Ms要高于单一CoFe2O4纤维,并且通过开关场分布图发现该比例下软硬磁材料,具有最强的交换耦合作用。通过对材料的开关场分布曲线和δM曲线分析,发现软磁与硬磁之间存在交换弹簧行为相、纳米纤维的交换作用比纳米粒子强。