【摘 要】
:
目前,传统的有机保温材料大都以石油化工产品作为原料。呋喃树脂作为一种生物基材料,结构中呋喃环的存在能够赋予其优异的热稳定性能。同时,生物基材料应用领域的扩大可以减缓能源危机和环境污染问题。因此,本文选用呋喃树脂作为树脂基体,将空心玻璃微珠与呋喃树脂通过溶液共混法得到复合材料,探索了呋喃树脂基复合材料在保温领域的应用潜力。本论文以空心玻璃微珠与呋喃树脂作为基础原料,苯磺酸为固化剂,丙酮为稀释剂,研制
论文部分内容阅读
目前,传统的有机保温材料大都以石油化工产品作为原料。呋喃树脂作为一种生物基材料,结构中呋喃环的存在能够赋予其优异的热稳定性能。同时,生物基材料应用领域的扩大可以减缓能源危机和环境污染问题。因此,本文选用呋喃树脂作为树脂基体,将空心玻璃微珠与呋喃树脂通过溶液共混法得到复合材料,探索了呋喃树脂基复合材料在保温领域的应用潜力。本论文以空心玻璃微珠与呋喃树脂作为基础原料,苯磺酸为固化剂,丙酮为稀释剂,研制一种新型的保温复合材料。由于空心玻璃微珠本身容易发生团聚现象并且与树脂基体的相容性不好,采用γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对其进行表面改性制备得到改性空心玻璃微珠,其次通过溶液共混,升温固化制备得到空心玻璃微珠/呋喃树脂复合材料和改性空心玻璃微珠/呋喃树脂复合材料。通过红外光谱分析(FTIR),X射线光电子能谱(XPS)、热重分析(TGA)和扫描电子显微镜(SEM)测试手段对空心玻璃微珠和改性空心玻璃微珠的微观结构和形貌进行了表征,并研究了空心玻璃微珠和改性空心玻璃微珠添加量对复合材料整体性能的影响。实验结果表明:偶联剂KH570成功接枝到了空心玻璃微珠表面得到了改性空心玻璃微珠。空心玻璃微珠的加入进一步提升了复合材料的热稳定性能,空心玻璃微珠/呋喃树脂复合材料失重10%时的温度(T10%)以及800℃下的质量残留率分别达到257.0℃和58.0%。相比较于空心玻璃微珠,改性空心玻璃微珠在呋喃树脂基体中具有更好的分散性,因此对复合材料性能的提升更为明显。改性空心玻璃微珠/呋喃树脂复合材料失重10%时的温度(T10%)以及800℃下的质量残留率分别达到了267.8℃,60.5%。当改性空心玻璃微珠的添加量为20 wt%时,复合材料的导热系数和氧指数值分别达到0.0274 W/m·K和31.6%,均优于呋喃树脂和空心玻璃微珠/呋喃树脂复合材料。虽然空心玻璃微珠/呋喃树脂复合材料和改性空心玻璃微珠/呋喃树脂复合材料的机械性能有着一定的下降,但是仍旧在保温领域具有一定的应用前景。
其他文献
近年来,碳化硅(SiC)器件在高温电力电子领域快速发展。然而,SiC材料的弹性模量约是硅的三倍,极易导致SiC芯片的键合引线发生热机械应力失效。而低温烧结纳米银具有低弹性模量、高导热、高温可靠等优异特性,因此,本文采用低温烧结银作为关键封装互连材料,通过探索改进低温无压烧结纳米银工艺方法,研制了一种多芯片并联大容量(1200-V/300-A)SiC混合模块,提升了SiC混合模块中键合引线的封装可靠
医用内窥镜等医疗检测设备在使用的过程中易产生起雾和细菌滋生问题,镜头上的雾气会影响图像的正常采集,而在镜头表面产生的细菌不仅会对镜头造成损伤,更会引发感染,存在安全隐患。在光学镜头表面涂覆具有防雾、抗菌功能的涂层可有效解决雾气和细菌污染的问题。本文以两性离子单体等为原料,制备了兼具防雾与抗菌功能的具有高透明度和高稳定性的涂层,考察了共聚物组成对涂层各方面性能的影响,并对其防雾和抗菌性能进行研究。以
高强度低合金管线钢作为最主要的石油天然气运输装备用钢,一直备受关注。由于服役环境的复杂多变,开发具有良好焊接性、强韧性、耐腐蚀性、抗大变形能力等多种性能的管材是当下国内外研究者的重要任务之一。为探究奥氏体化条件对X65钢组织的影响,从而为优化性能提供理论及实验依据,本文通过设计不同奥氏体化温度及时间,结合金相显微镜、透射电子显微镜、淬火膨胀仪、高温激光共聚焦显微镜等一系列的分析测试手段,研究实验钢
近年来,化石能源短缺以及环境污染问题日益严峻,人们迫切要求开发各种绿色可再生能源,如氢能、太阳能、风能、潮汐能等。氢能具有高的比能量密度,且环境友好,被认为是一种理想的化石燃料替代品。在产氢技术中,电解水产氢具有产品纯度高、过程环保、能耗低、能量转化效率高的优点,因此备受关注。目前电解水产氢技术面临的主要问题是由于电极极化作用产生过电势,造成额外电能的消耗。寻找一种用来降低过电位,同时提升产氢性能
目的 应用响应面法优化西兰花蔬菜干提取工艺,同时对水提液的抗氧化能力进行研究。方法 以萝卜硫苷为指标比较提取时间、温度、次数、加水量的单因素条件,再采取Box-Behnken组合法设计试验进行响应面分析;同时研究西兰花蔬菜干水提液的抗氧化能力。结果 最佳水提取工艺为加水25倍,温度66℃,提取29min,提取1次,验证得到萝卜硫苷含量为3.60mg·g-1。水提液分别对Fe3+具有还原能力,对AB
20世纪以来,随着科技的飞速发展,能源匮乏、环境恶化影响着人们的生活。当今世界需要开发清洁、可再生以及具有经济效益的替代能源。太阳能既丰富、清洁又容易获得,被认为是最有吸引力的替代能源。利用太阳能进行光催化不仅可以实现水分解制氢,还可以将二氧化碳转化成有用的碳氢燃料,因此人工光合成是一种有前途的解决方案。作为一种新型宽光谱响应光催化材料,InxGa1-xN材料引起了人们的广泛关注。而且一维InxG
Fe-36Ni合金和304L奥氏体不锈钢具有低温性能好和膨胀系数低等优势,是制备新一代液化天然气(Liquefied Natural Gas,LNG)船液舱围护系统的主要材料,由两种材料焊接而成的复合结构是组成液舱围护系统的重要部分,因此研究Fe-36Ni/304L异种合金的焊接工艺及接头特征尺寸和力学性能预测具有重要意义。本文针对Fe-36Ni和304L搭接脉冲钨极氩弧焊(Gas Tungste
钢铁材料由于具有成熟的制备工艺、优良的综合力学性能和较高的性价比等特点被广泛应用于工业领域,但其在服役环境中极易受到腐蚀。目前为止,在钢铁表面制备耐腐蚀涂层是最合理高效的防护手段之一。掺杂ZnO阻变薄膜是一类含有大量氧空位等本征缺陷的半导体材料,其内部的氧空位能够与环境中O2发生复合,而通过电场的作用可以使薄膜中O2-迁移并脱离薄膜而重新产生氧空位。由此通过对薄膜内氧空位的形成和分布进行调控,使薄
聚1-丁烯(iPB-1)是一种性能优异的多晶型高分子材料,但由于其晶型II到晶型I的转变较慢,导致其应用受限。本文通过差示扫描量热法(DSC)、广角X射线衍射(WAXS)等手段研究了一种商品名为TAB-3的添加剂对一种含少量聚丙烯的iPB-1合金的影响,发现TAB-3可以明显加快iPB-1在室温下的Ⅱ-Ⅰ转变,而不同温度退火处理后显示,室温下TAB-3对Ⅱ-Ⅰ转变前期没有明显促进作用,更低温度下退
牛血清白蛋白(BSA)具有临床验证的安全性及巨大的功能化潜力,因而被广泛应用于水凝胶的设计与合成中。迄今成功制备的可注射BSA水凝胶的压缩应力可达千帕级别,但若要将该可注射水凝胶应用于生物医学领域,如软骨修复(天然软骨的压缩应力为2 MPa及以上),其力学性能还有待提高。本文分别采用阳离子聚合物ε-聚赖氨酸(EPL)和聚乙烯亚胺(PEI),利用其与BSA表面带负电荷的氨基酸序列间的静电作用以增强水