UiO-66/聚酰亚胺基复合材料制备与性能研究

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:gaoruizhou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
聚合物基纳米电介质具有优异的绝缘和力学性能,广泛应用于微电子、电气绝缘和新能源等领域。随着5G信息时代来临,集成电路产业飞速发展和尖端科技不断革新,对聚合物基纳米电介质的综合性能(尤其是绝缘性能)提出更高的要求。UiO-66(典型的Zr-MOFs)作为一种近年炙手可热的新型纳米材料,其比表面积大和易于修饰的特点,可以用于制备新型聚合物基纳米电介质材料,但目前相关报道较少。本文利用溶剂热法制备UiO-66纳米颗粒,通过表面改性引入氨基制备UiO-66-NH2纳米颗粒。使用原位聚合法将两种颗粒与聚酰亚胺(PI)基体复合,制备UiO-66/PI和UiO-66-NH2/PI复合薄膜。采用SEM、TEM、XRD、FTIR、SAXS等方法研究UiO-66和UiO-66-NH2颗粒及其复合薄膜的微观结构和界面特性;利用介电谱仪、拉伸机等设备研究复合薄膜的介电、击穿、耐电晕老化和力学性能。实验结果表明,UiO-66颗粒具有高稳定性的正八面体结构。颗粒上的羟基与PI分子链形成氢键,以大比表面积的三维拓扑结构为模板,在颗粒内部和表面形成三维界面网络。具有低介电常数(2.2-2.4)和孔洞结构的UiO-66形成界面效应,提升复合薄膜电学和力学性能。在1wt%组分下,UiO-66/PI复合薄膜Eb达到458.6k V/mm,比纯PI提高约64%,杨氏模量提高约5.2%,同时复合薄膜的介电和耐电晕老化性能也得到提升。为了增强填料与基体之间的界面相容性,进一步优化复合薄膜的性能,通过表面改性引入氨基,制备UiO-66-NH2纳米颗粒。实验结果表明,随着UiO-66-NH2组分增加,复合薄膜的介电常数增大。102 Hz下最高达4.28。薄膜的损耗值与纯PI相差很小,没有出现明显的损耗峰。1wt%组分的UiO-66-NH2//PI复合薄膜最大Eb达到503.7 k V/mm,杨氏模量比纯PI提高约8.2%。结合多核模型,引入界面影响因子修正经典的介电模型,研究改性后氨基对复合薄膜界面结构和电学性能影响。建立界面多作用区模型,分析界面处势垒分布,提出UiO-66/PI和UiO-66-NH2/PI复合薄膜性能提升的微观机理。
其他文献
现代经济的发展离不开能源。核能作为一种新型可再生能源,广泛应用于食品、中药等产品的辐照灭菌、二次加工等领域。在核辐射环境下,对退化图像中货物类别信息的准确划分和位置信息的异常变化检测可以为自动化运输和核事故预警防护提供可靠的理论依据和技术支持。传统的退化图像信息识别技术存在诸多缺点,目前已不能满足于智能化生产的要求,如何利用深度学习网络模型克服其存在的不足,提高核辐射场景下货物的类别和位置信息的识
学位
超声液位探测方法在气象、水文和海洋等众多领域起着重要的作用,提高液位探测的精度具有重要的意义。针对狭小空间内超声波阵列结构受限、复杂反射回波的问题,研究多输入多输出(MIMO)超声探测系统的达波方向(DOA)联合估计方法,在此基础上开展非均匀超声阵列探测的研究。本文首先对MIMO超声阵列结构深入研究,主要分析阵列排布与虚拟阵元数量的关系,并基于相位中心近似原理形成虚拟阵元不重叠的非均匀MIMO超声
学位
随着半导体技术的发展,封装技术对微电子封装材料的要求越来越高。在理论与经验的指导下,通过实验不断尝试新材料或者新的元素相互组合的传统的封装材料的研究策略已不适用于如今半导体与封装技术愈发受重视的当下。同时,基于第一性原理的高计算复杂度以及材料可探索空间的增大,第一性原理计算与实验结合的方式逐渐不能满足对微电子封装材料研究的需求。因此提出一种新的能在大材料空间进行高效探索的研究策略对封装材料的研究来
学位
微操作技术是对微米级别的被控对象进行拾取-释放等系列操作,在微机电系统、微注射医疗与微成像等领域发挥着越来越重要的作用。随着微观领域科学的进步,对微操作技术的操作效率与精度也提出了更高的要求。由于当前的微操作方法中普遍存在着操控效率低、破坏性较强等特点,对未来微观领域中系统操作整体效果与实际生产能力影响提出艰巨的挑战。因此研究基于电化学的微构件操控策略,对提高微操作的高效性、灵活性以及微米级金属对
学位
计算机断层扫描(Computed tomography,CT)在临床应用中实时快捷、图像质量高,已经成为脊柱类疾病检测的主流成像方法之一。从CT图像中分割出椎骨是脊柱类疾病诊断和治疗的重要步骤。传统分割方法或者基于机器学习技术在分割性能和效率方面均满足不了实际临床应用的需求,深度学习尤其是卷积神经网络的强大识别能力使得它能够得到显著优于其它方法的分割结果。本文研究基于深度卷积神经网络AM-UNet
学位
近年来,随着人工智能在生活生产中的大规模应用,深度学习算法也被越来越多的研究者关注。卷积神经网络作为深度学习中应用较为广泛的算法,在诸多领域都取得了较好的效果。但是随着网络规模逐渐增大,对应的计算量也随之快速增大,限制了网络模型的应用场景。目前主流的神经网络部署平台以CPU,GPU为主,但是这两种平台功耗较高,设备尺寸也较大,无法部署在一些有功耗限制的移动端应用场景。二值化卷积神经网络将权重量化为
学位
随着物联网技术及其相关应用的飞速发展,射频识别标签、低端智能卡、无线传感网络以及大量的小型设备逐渐融入到人们的社会生活中。在物联网技术与人们的日常生活关系日益紧密的同时,信息传输的安全性引起人们的高度重视。哈希函数是常用的信息加密技术之一,由于物联网技术的相关设备在计算能力,内存大小和功率等方面具有若干限制,这些限制给常用的哈希函数带来了挑战,因此轻量级哈希函数应时而生。利用可重构技术设计可重构密
学位
树脂基复合材料压力容器具有质量轻、耐腐蚀、抗疲劳等优点,已应用于航空航天、军事、能源工业等领域。但树脂基复合材料容器在冲击载荷下易发生树脂基体失效,严重限制了其在可移动、冲击环境等领域的应用。为提升复合材料压力容器耐冲击性能,可以采用不带树脂的干纤维缠绕增强压力容器。然而,不同于传统的湿法纤维缠绕成型结构,干纤维缠绕由于没有树脂基体对纤维的浸润、粘接及应力传递作用,其成型过程对纤维落纱点精度及纤维
学位
采用真空蒸镀和磁控溅射技术,制备了结构为Cu/Co Pc(Cu Pc)/Al的薄膜二极管和结构为Cu/Co Pc(Cu Pc)/Al/Co Pc(Cu Pc)/Cu的薄膜晶体管,对制备的器件在不同湿度环境下的电学性能进行了测试,通过计算表征器件的物理参数,探究该器件的工作原理,解析湿气对器件的影响机理,以及该器件作为湿度传感器的可能性。首先测试了有机薄膜二极管的在不同湿度环境下的特性。结果表明,水
学位
智能体(agent)广泛应用于人类难以到达的领域,如地形探索、恶劣环境搜救等,这些复杂任务对agent路径寻优提出挑战。单agent难以完成复杂路径寻优任务,学者开始对多agent路径寻优展开研究,基于显式通信进行精准计算的精确算法虽然可以求得最优结果,但只有给出严格数学依据才能得出最优解,算法时间复杂度随问题规模和agent数量增长,只适用于整体复杂度较低且路线较少的情况;启发式算法虽然能够在可
学位