论文部分内容阅读
发射与接收系统是激光多普勒测风雷达中至为重要的一个功能模块。本课题通过理论模拟和实验研究对其光学主要参数的选取、同轴调整、光纤耦合调整及其光束准直进行了分析,对提高激光测风雷达的探测距离和接收效率有着重要的意义,是雷达系统鉴频和信号处理的基础和依据。理论研究包括以下2个方面:通过激光雷达方程、卡塞格伦望远镜模型以及透镜成像理论,结合出射激光的光学参数,提出了出射激光8倍扩束、40cm通光口径卡塞格伦望远镜接收、62.5μm芯径多模光纤耦合的设计要求;基于F-P标准具透过率模型,数值计算分析了光纤出射光束发散角对角度调谐下标准具透过率曲线及其包络、初始工作点选取以及鉴频灵敏度的影响,与实验吻合较好。实验研究包括以下3个方面:为实现远距离回波信号的探测接收,通过面阵CCD探测器和电控调整架编程实现了发射与接收系统的光学同轴调整,当设定成像质心误差为5个像素时,其光学同轴误差为15.86μrad,此时可通过光子计数器和数据采集卡有效探测接收到9km内的回波信号;为实现回波信号与多模光纤的有效耦合,通过532nm及1064nm激光正反向调整结合对其光路进行了精确调整,由于入射激光参数及调整精度的影响,最佳调整时多模光纤耦合效率为17.54%;对多模光纤传输准直后的回波信号,通过CCD标定法对其发散角进行了精确测量,当CCD精确放置在长焦距透镜焦点处时,由于CCD质心定位像素误差导致的发散角测量误差为2.73μrad,且该法可实时观测光束在准直调整过程中发散角的变化以及光斑光强分布情况,有利于准直系统的实时调整,在此基础上通过焦距为23.5mm的短焦距非球面透镜实现了对出射光束的准直,最佳准直情况下发散角为3.25mrad,结合发散角分别为7.34mrad、1.42mrad时F-P标准具角度扫描透过率曲线,得出光束发散角对曲线形状及包络的影响,与数值分析吻合较好,对于自聚焦透镜准直,结合4倍离焦系统可实现2.75mrad的发散角准直,进一步3倍扩束可实现1.09mrad的发散角压缩,与单透镜准直相比,准直效果较好。