论文部分内容阅读
稀土配合物由于多变而迷人的拓扑结构日益受到人们的关注,在荧光材料、催化领域以及非线性光学材料等领域均有广泛的应用前景。Eu(Ⅲ)离子由于具有荧光强度高、荧光寿命长及发射谱带尖锐等特点更成为研究中的热点。当选择合适的有机配体与Eu(Ⅲ)离子形成配合物时,不但可以构筑结构新颖的配合物,而且可以由配体向Eu(Ⅲ)离子进行有效的能量传递,得到性能优良的发光材料。本论文选择5-(2′-吡啶)四唑、N-氧化烟酸、2,2′-联吡啶-3,3′二羧酸和草酸为配体,以Eu(Ⅲ)离子为中心离子,合成了四个具有不同结构和维数的新型铕配合物,并对它们进行了元素分析、红外和热重分析表征,解析了其单晶结构并研究了它们在室温条件下的固体荧光性质。同时考察了包括第二配体用量、金属离子的引入等因素对于配合物可控合成及结构的影响。1.对配体5-(2′-吡啶)四唑的合成工艺进行优化,得到了合成5-(2′-吡啶)四唑的最佳反应条件为:n叠氮化钠:n2-氰基吡啶:n三乙胺=1.05:1:1.15,反应时间是12小时,5-(2′-吡啶)四唑产率可达78.1%。利用合成的5-(2′-吡啶)四唑作为配体,选择Eu(Ⅲ)离子作为中心离子,得到了配合物[Eu(C6H4N5)3(H2O)3](H2O)3.5(1),配合物1为零维结构,相邻的Eu(Ⅲ)离子通过配位水和晶格水的氢键作用,形成由Eu-O-Eu水链连接成的二维层状结构,同时配合物1具有良好的荧光性质。2.利用N-氧化烟酸为第一配体,草酸作为第二配体,在水热条件下合成了两个结构不同的铕(Ⅲ)配合物[Eu2(NNO)4(COO)2(H2O)2](2)和Eu2(NNO)4(OOC-COO)(H2O)2(3)(HNNO=N-氧化烟酸,HOOC-COOH=草酸)。配合物2中Eu(Ⅲ)离子展示了一种畸变的五配位的几何构型,NNO配体通过采取双连接方式将相邻的Eu(Ⅲ)离子连接形成一维无限链,相邻的一维无限链进一步通过氢键作用形成了二维网状超分子结构。配合物3则首先通过配体NNO采取三连接方式将相邻的双核Eu(Ⅲ)离子连接成一维多孔双链,相邻的一维双链进一步通过NNO配体采取双连接方式与Eu(Ⅲ)离子配位连接成二维网状结构,每一个二维层由采取双连接方式的草酸根与Eu(Ⅲ)离子配位形成三维孔道状拓扑结构。荧光光谱显示配合物3的荧光强度高于配合物2,进一步证明了结构对性质的影响。同时,第二配体的用量和金属离子的引入因素对配合物单晶体的生成和结构起到一定的调控作用。3.以2,2′-联吡啶-3,3′二羧酸为有机配体,在水热条件下与Eu(Ⅲ)离子和Ag(Ⅰ)离子作用得到了结构新颖的高维数异核配合物[Eu4Ag2(C12H6O4N2)5(OH)4(H2O)3·10H2O(4)。配体2,2′-联吡啶-3,3′二羧酸在配合物4中展现出五种不同的配位模式,关于该配体在同一化合物中存在五种配位模式目前还未见文献报道,其中发现2,2′-联吡啶-3,3′二羧酸四种新型配位方式,配合物4展现出良好的荧光特性。此外,反应原料配比、反应时间等因素对配合物单晶体的生成及配合物的结构具有一定的控制性。当反应原料中2,2′-联吡啶-3,3′二羧酸和Eu2O3的摩尔数分别固定为1mmol和0.5mmol,AgNO3的摩尔数等于或是大于0.4mmol时,得到没有荧光的浅黄色微米管。