论文部分内容阅读
我国汽车的保有量2015年突破1.6亿,与此同时交通事故数量也呈现明显增长趋势,交通事故的发生在很大程度上是由不良的制动性能引起的,传统制动系统已不能满足当前汽车的需求。集成制动系统作为新一代制动系统的产物,具有响应快速、结构简单、易于实现汽车防抱死制动系统(Anti-lock Braking System简称ABS)、牵引力控制系统(Traction Control System简称TCS)、电子稳定性控制(Electronic Stability Program简称ESP)等功能,是汽车制动系统研究的新方向。集成制动系统的稳定性控制及制动轮缸压力伺服控制是目前研究的热点,也是本文研究的出发点。动力学稳定性集成制动控制与压力伺服控制是集成制动系统研究的关键技术。针对集成制动系统的特性,设计基于ABS、TCS、ESP的整车稳定性控制器,与轮缸压力伺服控制器,并进行离线仿真、硬件在环测试,主要研究内容:(1)课题调研:调研了有关集成制动系统方案以及制动轮缸压力伺服控制的国内外研究研现状;(2)集成制动系统控制器设计:针对集成制动系统稳定性控制,设计了防抱死制动系统模糊PID控制器、牵引力控制系统模糊PID控制器、电子稳定性控制系统模糊-逻辑门限值PID控制器;针对轮缸压力伺服控制,设计基于模糊RBF(Radial Basis Function简称RBF)神经网络PID伺服控制器;(3)搭建集成制动伺服控制仿真平台:推导有关制动系统的数学模型,搭建基于Car Sim和Simulink的整车动力学仿真模型、制动系统动力学仿真模型以及控制器模型仿真平台;(4)整车控制算法软件在环仿真分析:针对模糊RBF神经网络PID伺服控制器,进行制动轮缸的增压工况响应仿真分析与减压工况响应仿真分析,验证伺服控制器的合理性;针对整车动力学稳定性控制器,进行典型ABS工况仿真分析、典型TCS工况仿真分析、典型ESP工况仿真分析,验证整车控制器的合理性;(5)搭建集成制动伺服控制硬件在环试验平台,进行典型工况试验验证:a)设计集成制动系统的有关硬件电路,包括:电源电路设计、最小系统设计、电磁阀驱动电路设计、信号采集电路设计以及CAN通信电路设计等;b)搭建了基于d SPACE、Car Sim RT的硬件在环实验平台;c)进行典型增压工况、典型减压工况硬件在环试验,验证伺服控制器合理性;进行整车稳定性典型工况硬件在环试验,验证控制系统的合理性。