【摘 要】
:
随着经济的快速增长,环境和能源的问题日益突出。传统制备高附加值化学品的方法,大多需要高能耗的输入,而加剧了能源与环境问题。随着半导体光催化技术的提出与发展,人类进入了可同时解决能源与环境问题的新纪元。利用太阳能制备高附加值化学品,能极大程度降低能耗,有望在未来实现可持续发展。过硫酸(S2O82-)和过氧化氢(H2O2)是两种非常重要的化学品,但目前对于光催化产生S2O82-和H2O2的研究非常少,
【基金项目】
:
国家自然科学基金项目(U1862111); 四川省国际合作项目(2019YFH0164); 中国长江学者奖励计划; 中国科学院“西部之光”项目;
论文部分内容阅读
随着经济的快速增长,环境和能源的问题日益突出。传统制备高附加值化学品的方法,大多需要高能耗的输入,而加剧了能源与环境问题。随着半导体光催化技术的提出与发展,人类进入了可同时解决能源与环境问题的新纪元。利用太阳能制备高附加值化学品,能极大程度降低能耗,有望在未来实现可持续发展。过硫酸(S2O82-)和过氧化氢(H2O2)是两种非常重要的化学品,但目前对于光催化产生S2O82-和H2O2的研究非常少,从而制约了光催化技术在该领域的发展。氧化钨(WO3)是光催化领域中常见的n型半导体材料,具有无毒无害、酸性条件下化学性质稳定和良好的可见光响应等优点,使得WO3成为光催化合成S2O82-和H2O2的重要材料。但是,WO3中光生电子和空穴易复合的缺点,导致它的光催化性能仍然非常差。因此,本论文对WO3进行改性,以实现高效率光催化生成S2O82-和H2O2为目的,进行了以下研究:(1)通过不同方法将贵金属铂(Pt)负载于WO3表面,提高了光催化生成S2O82-和H2O2的活性。活性测试结果表明采用光沉积(PD)法负载的样品具有最好的S2O82-生成活性,分别是化学还原(CR)法和浸渍(IM)法的2.1和4.4倍,而IM法制备的样品实现了同时生成S2O82-和H2O2,且其比例达到了1:1。通过X射线光电子能谱(XPS),初步分析表明,由于Pt在WO3上的不同化学价态导致了光催化活性的差异。(2)进一步考察Pt在WO3上的化学价态对光催化生成S2O82-和H2O2活性的影响。通过改变甲醇(MeOH)在光沉积过程中的含量,实现控制金属铂(Pt0)和氧化铂(PtOx)在WO3表面的比例。结果表明,随着MeOH的含量升高,Pt0和PtOx的比例呈逐渐减小的趋势,而不同 MeOH含量制备的Pt负载WO3中只有Pt的化学价态存在差异。通过光电化学实验和活性测试结果,推测PtOx为氧化助催化剂,加速H2O2的形成;而Pt0为还原助催化剂,促进O2被还原为H2O。这种双助催化剂加速了电子空穴对在光照条件下的分离效率,大大提高了光催化活性。(3)受双助催化剂的启发,并降低对贵金属Pt的使用,设计了双贵金属Pt和Au负载型WO3。形貌测试及能谱扫描结果表明,Pt与Au形成了核壳结构。核壳结构的存在,能够进一步提升光催化生成S2O82-的活性。在300W Xe灯可见光(λ>420 nm)光照3 h后,形成Pt-Au核壳结构的助催化剂生成S2O82-的活性达到了 36 μmol,为单一 Pt负载的1.7倍,单一 Au负载的35倍。本论文研究了贵金属Pt及Pt-Au合金在WO3上对于光催化产生S2O82-和H2O2的性能,考察了生成S2O82-和H2O2的影响因素,为反应机理提供了可参考的信息,对利用H2O2、O2,H2SO4和光催化剂同时制备H2O2和S2O82-有一定的借鉴意义。
其他文献
凝胶聚合物电解质(GPE)兼具了液体电解质(LE)和固态聚合物电解质(SPE)优点,具有良好的安全性和优异的电化学性能。GPE主要由聚合物基体、增塑剂和锂盐组成,常见的聚合物基体主要是来自于石油化工的合成高分子,如聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈和聚偏氟乙烯等。然而二次电池的广泛使用和环境的日益破坏对电解质的开发提出了更高的要求,不仅要有良好的电化学性能和安全性,也要在电池废弃后尽可能降低对
异种金属材料的物理、化学性能有很多不同,化学成分之间也有较大差异,因此异种金属的焊接难度通常比同种金属更大。Q345低合金钢与316L不锈钢异种钢的焊接结构件广泛的应用于诸多工业领域,常规焊接工艺温度高、受热不匀均、需熔化母材等特点易于导致Q345/316L基材的性质差异放大而影响接头性能和稳定性,瞬间液相扩散焊(Transientliquidphase-diffusionbonding,TLP-
钙钛矿太阳电池因其低成本、易制造、高效率等优势,成为当前下一代光伏技术最有希望的候选者。钙钛矿光吸收层是钙钛矿光伏器件的核心,高质量的钙钛矿薄膜是器件实现优良性能的基础和前提。制备得到高质量钙钛矿薄膜的方法可大致分为两种:一种是优化钙钛矿薄膜的制备工艺,另一种是采用有效的薄膜后期处理策略。本论文基于后期处理策略以实现对钙钛矿薄膜晶体生长及形貌的调控,主要开展了以下工作:一、利用一步反溶剂法制备CH
对于碳酸盐岩资源的开采,目前塔河油田和顺北油田常采用裸眼完井+酸化压裂及油管支撑+酸化压裂两种工艺。但是由于较高的地层温度、地层水化和高孔隙压力作用等因素使得碳酸盐岩储层遭到破坏,同时由于在酸化压裂过程中容易形成高角度的裂缝导致井壁在完井过程中容易坍塌,这给实际工程的施工带来了较大的困难,增加了施工和修井成本。本文主要研究制备具有一定的强度、耐蚀性和暂堵性的支撑油管,该油管在作业初期能起着支撑井壁
电催化水解是一种能将电能转化为化学能的可靠技术,它能将太阳能、风能、潮汐能等间歇性能源产生的电能转换为可储存的化学能。在电催化水解技术面临的一系列挑战中,开发出一种具有高活性、低成本和良好稳定性能的催化剂是研究的关键。过渡金属(如Fe,Co)由于自然资源丰富,成本低廉等优点,近年来被广泛研究和报道。其中,过渡金属基硫化物由于电子的独特性和结构的多样性等优点,有望成为一类取代贵金属材料的催化剂。本文
随着酸性油气田的钻井开发及CO2驱油技术的运用发展,使套管钢在服役过程中面临各种复杂恶劣的腐蚀环境,不仅能在酸性腐蚀介质中发生析氢反应生成氢,让直径很小的氢原子轻易通过吸附扩散进入钢材内,使金属晶格发生高度变形,引发各种氢损伤失效事故;还会受到不同种类高强度的复杂应力作用导致材料开裂失效。面对目前日趋严峻的服役腐蚀环境,套管钢可能受到氢、应力和腐蚀的协同作用影响,加速腐蚀的进行,严重威胁油套管的安
油气田开发与运营中,设备与管道面临严苛的腐蚀环境,其中CO2腐蚀是油气田腐蚀的主要形式之一。在油气田管道的腐蚀防护中,缓蚀剂由于其用量少、成本低、操作简便而获得广泛应用。然而,油气田管道中介质复杂,腐蚀因素众多,单一的缓蚀剂并不能满足复杂多变的腐蚀环境,因此对具有协同作用的缓蚀剂体系的研究对于抑制油气田腐蚀具有非常重要意义。另一方面,绝大多数研究缓蚀剂在常温常压的缓蚀行为,而对于高温高压环境下这种
铝合金与钢的连接是异种材料焊接的重点研究领域,且在工程应用中铝合金和钢的连接需求较大,由于铝/钢物理、化学性能的巨大差异,容易产生脆性化合物等各种焊接问题,是研究者亟需解决的重要问题。本文通过MIG熔钎焊改变焊接热输入等工艺有效控制金属间化合物,实现铝合金和钢的有效焊接,同时通过工艺与模拟结合的方式做进一步的研究,具有重要的工程实际意义。本文采用MIG熔钎焊对1.5mm厚的6060铝合金和2mm厚
反相乳液聚合法具有乳液体系相对稳定、制备的微球产品粒径分布均一、过程中无需加入稳定剂等优点。聚合物微球具有“进得去、能运移、堵得住、长寿命”的特点,能够随着注入流体的运移,逐渐运移到作用位置,通过相关的物理作用和化学作用,完成对孔喉的堵塞。目前使用的微球体系存在抗温抗盐缓膨性能不佳、堵塞能力较差等不足之处。本文从反相乳液体系的选择和聚合物微球制备两个方面入手,展开了一系列的实验与探究,制备出了一种
凝胶聚合物电解质是一种相态介于液态电解质和固态电解质之间的电解质。它既克服了液态电解质的漏液、燃烧、爆炸问题,同时也克服了固态电解质的低离子电导率、低锂离子迁移数等问题,因而将凝胶聚合物电解质应用于锂离子电池是具有潜力的。凝胶聚合物电解质是由聚合物、增塑剂、锂盐和有机溶液四部分组成的。工业上使用的聚合物基质有聚氧化乙烯、聚丙烯腈、聚甲基丙烯酸甲酯和聚偏氟乙烯等,由于这些电解质是不可降解的,电池废弃