论文部分内容阅读
近些年来机器视觉的应用范围在迅速扩大,正逐步渗透于我们生活的各个领域。基于机器视觉技术的织物疵点检测已成为目前织物检测领域发展的一个重要方向。由于图像检测处理要求速度快,运算量大,传统串行指令结构处理器已经很难满足高速实时图像的采集与检测。如何利用硬件提升图像检测处理的性能已成为一个热点问题。随着微电子技术的快速发展,高性能的现场可编程门阵列器件FPGA给机器视觉系统的设计带来了一种崭新方法。由于FPGA具备硬件结构可根据应用进行重构的特点,可以将图像处理算法由传统的软件串行实现改为硬件并行实现,并且很容易通过提高设计的并行度来增加运算的吞吐量,非常适合图像处理等计算密集型操作,利用单指令多数据(SIMD)等运算结构可以显著加速处理。本文提出一种采用机器视觉技术进行织物疵点实时检测的实现方案,从硬件的角度来实现织物的疵点检测算法。目标是实现对高速采集到的织物图像进行实时的疵点检测。整个系统包括检测系统平台的设计和织物图像检测算法的设计,全部由FPGA内部可编程逻辑资源实现。对FPGA的设计主要包括Camera Link图像采集接口设计,SRAM图像缓存接口设计,疵点检测算法设计,VGA显示接口设计以及串口通信接口的设计等。其中,在对算法的硬件实现时充分利用FPGA的结构特点进行灵活改进,并在运算模块中加入多级流水线提高系统工作频率,使得算法在FPGA中的实现效率更高。本文以QUARTUS II作为设计工具,以硬件描述语言VHDL作为设计输入,并结合仿真工具Modsim6.1f进行仿真,完成了整个系统的设计。采用Altera公司的Cyclone II系列FPGA芯片EP2C35F进行了功能验证。结果表明,系统能够准确的采集到织物图像并进行疵点检测,在时间和功能上都达到了预期设计目标。