【摘 要】
:
传统合金在过去几十年的研究中已经趋于饱和,很难再有进一步的突破。因此,自高熵合金的概念提出以来,便如雨后春笋般获得广泛研究。但目前仍然存在很多关键的问题需要解决,例如强度和塑性不能达到良好的平衡,并且高熵合金的制备成本比较高昂也很难大批量的生产,因此限制了它在工业中的生产应用。本课题拟在前人研究的基础上,选择具有单一FCC结构的CoFeNi2V0.5高熵合金作为研究基体,通过向其添加大原子尺寸的A
论文部分内容阅读
传统合金在过去几十年的研究中已经趋于饱和,很难再有进一步的突破。因此,自高熵合金的概念提出以来,便如雨后春笋般获得广泛研究。但目前仍然存在很多关键的问题需要解决,例如强度和塑性不能达到良好的平衡,并且高熵合金的制备成本比较高昂也很难大批量的生产,因此限制了它在工业中的生产应用。本课题拟在前人研究的基础上,选择具有单一FCC结构的CoFeNi2V0.5高熵合金作为研究基体,通过向其添加大原子尺寸的Al元素来调控合金的组织结构,筛选出其中性能优异的合金进行热处理以及冷加工变形,进一步来强化合金性能。得出的主要结论如下:(1)在AlxCoFeNi2V0.5高熵合金体系中,随着x值的增加,合金的晶体结构从FCC经过FCC+BCC最终转变为强度较高的BCC+B2结构。这其中存在Al的固溶强化效果和BCC第二相强化效果使得合金硬度从140.4HV增加到396.4HV,但塑性降低严重。(2)针对Al0.6合金在600℃、800℃、1000℃下进行4h的退火处理,与铸态相比,退火后的Al0.6合金的强度和硬度均降低。这是因为退火消除了合金内部的内应力。但随退火温度的提高合金的强度和硬度逐渐提高。这是因为在800℃时析出了硬质的Al3V金属化合物,1000℃下1000℃下,合金在FCC的基体中析出了很多的硬质BCC相。(3)针对Al1.0合金在600℃、800℃、1000℃下进行4h的退火处理,发现在800℃退火热处理后析出了大量的σ相,1000℃次之,600℃最少。800℃下σ相的大量析出使得合金的塑性降低,在600℃退火热处理后,存在一个亚稳态向稳定状态转变的过程,使得合金在塑性不变的情况下强度增加,表现出最好的综合力学性能。(4)铸态下Al0.6合金具有良好的塑性但是强度较低,屈服强度为229MPa,断后伸长率为25.1%;经过压下量为60%的轧制后,铸态下的枝晶被破坏,合金的强度得到大幅度提高,屈服强度达到785MPa,但是材料的塑性下降严重,断后延伸率仅为3.7%。(5)对轧制后的Al0.6合金进行450℃-1000℃的热处理保温1小时后空冷,发现随着温度的升高,没有发生相结构的转变,具有很好的结构稳定性,并且轧制后合金内部的内应力被消除,合金的塑性不断提高,在1000℃时强度和塑性达到最大的平衡。屈服强度为737MPa,断后伸长率达到26.7%。(6)对轧制后的Al0.6合金在1000℃下进行10min到12h不同时间的热处理研究。发现伴随时间的延长,合金发生了从回复再结晶到晶粒长大的过程,因此性能上合金也呈现一个塑性和强度先增加后降低的趋势。
其他文献
水中高压脉冲放电过程会产生强烈的紫外线辐射、冲击波以及大量活性自由基,因而水中放电等离子体技术在污水处理、岩石破碎和水下声源等领域已得到了广泛应用,并具有巨大前景。受制于测量诊断技术和理论模型的局限性,现有观测手段难以对放电起始和流注发展过程进行描绘,给实际应用中放电的精确控制带来困难。针对上述问题,本文以水中纳秒脉冲针-板电极放电为例,利用有限元数值模拟手段建立了分析水中长、短纳秒脉冲放电的流体
一个国家的综合实力要靠科学技术来支撑,而科技的发展离不开人才,人才的培养离不开教育事业的发展。所以当前国际竞争的实质归根到底还是教育事业的竞争。培养担当民族复兴大任的时代新人是习近平在党的十九大首次提出来的。高校要落实好立德树人根本任务,不断培养有理想、有本领、有担当,能够担当民族复兴大任的时代新人。党的十八大以来,习近平站在实现着中华民族伟大复兴中国梦的高度上,在一系列会议、讲话中就高校思想政治
复合材料点阵夹层结构是新一代集材料、结构、功能设计为一体的理想结构,具有轻质、高比强、高比刚、可设计性强等优良性能,但现有制备工艺材料利用率低、生产成本高且自动化程度低,严重限制了复合材料点阵夹层结构工业化生产与应用。本文以热塑性复合材料点阵夹层结构高承载性能与低成本制造为目标,提出基于自动铺放原位成型工艺的点阵夹层结构新型制备工艺,并对新型点阵制备工艺开展研究,探索工艺参数对成型制件力学性能与铺
随着物联网、大数据、深度学习的发展,智能船舶、智能油田是目前船舶与海洋工程界研究的热点,海浪信息的实时获取十分重要。针对目前人工或仪器监测存在的精度低、成本高、易受恶劣海况影响等问题,本文基于浮式平台运动响应反演波浪信息具有十分广阔的应用前景。本文以半潜式海洋平台为研究对象,进行卡尔曼滤波和welch谱分析研究,采用混合优化算法得到海浪信息。(1)建立了基于考虑二阶运动响应的平台监测运动数据的滤波
纯铜薄壁平面构件是精密物理实验所需的重要实验样件,不仅需要较高的表面质量,还需要极高的尺寸精度,然而由于其径厚比大,刚性差,极易受到残余应力等因素的影响而产生加工变形,难以保证加工精度。因此,本文以纯铜薄壁平面构件为研究对象,通过有限元建模结合试验测试等方法,开展对其加工变形的预测研究,其中分别建立了加工残余应力的预测模型以及综合考虑多种因素作用的加工变形预测模型,并以此探究了加工残余应力以及加工
在工业智能化建设的大背景下,加强石化企业生产管理、操作优化、提升装置智能化和数字化水平是当前建设的重点。本文以某厂变换装置为背景,以建设智能管理平台中的生产优化模块为目标,基于装置数据采集现状,利用混合建模、数据驱动等建模技术对反应器及变换装置进行模拟优化研究,以期加强企业智能化平台建设中产品质量管控、提升装置智能化水平。具体研究内容及结论如下:(1)核心反应器R2202~R2204混合建模与产品
流体砰击问题广泛存在于陆地运输、航空航天工程以及船舶与海洋工程等领域。当流体砰击发生时,自由液面往往会表现出不同的物理现象或者多种物理现象的组合,例如:破碎波和包裹气体等复杂现象。由于涉及裹气效应和水弹性等复杂因素,流体砰击弹性壁面问题是流体力学领域极具难度的研究课题之一。物理模型实验是研究流体砰击问题最可靠的研究方法。因此,本文搭建了弹性矩形液舱内流体砰击模型实验平台,设计了图像数据采集系统,实
在活性氧中,单线态氧是最活泼且寿命最短的。由于它的反应性,它可以与脂质、氨基酸、核酸和大多数细胞成分发生反应。而稠环芳烃已经被验证是一类可与1O2反应生成存储单线态氧的内过氧化物,并且这类化合物在加热时可实现环还原来释放1O2,所以在本文中我们选取结构比较容易修饰且溶解性好的的1,4-二甲基萘为母体来进行修饰。本文针对单线态氧的利用提出了两种构思:1、如今,已经出现了许多对抗生素具有抗药性的菌株,
光伏产业的发展带来晶硅材料的巨大需求。多晶硅作为生产光伏太阳能电板的原材料目前市场需求量已超过20万吨,然而目前市场的制备工艺对以多晶硅为主的太阳能光伏电板的一次利用率仅为65%左右,未使用的废弃料需要通过再提纯工艺进行再生制造利用。随着大规模集成电路工业化的发展,以砷(As)作为掺杂剂制备N型半导体硅材料的市场需求量不断增加。As是多晶硅中一种典型的非金属元素,在多晶硅中稳定的掺杂As有利于提高
海洋油气是保障我国国家安全的重要战略资源,浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)作为海洋油气开发的主力装备之一,广泛应用于我国渤海和南海海域。软刚臂单点系泊系统(Soft Yoke Mooring System,SYMS)是实现FPSO定位的重要装置,能够保证海洋平台的长期稳定工作和安全生产。由于结构的复杂性和长期承受多