关于图上随机游走的分割点

来源 :南开大学 | 被引量 : 0次 | 上传用户:w2119h
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对度有界的非顺从球面对称无穷图、度有界的非顺从无穷树、度有界的非顺从顶点传递图,证明了其上的简单随机游走有无穷多分割时,从而有无穷多分割点。此外,对(Z)d上具有无穷跳跃范围的对称随机游走,证明了(1)当跳具有二阶矩且d≥5时,其有无穷多分割时、分割点;(2)当跳具有小于α∈(0,2)阶的矩且d>2α时,在对跳加适当的条件下,其分割时、分割点数目无穷。  
其他文献
风险理论主要研究保险事务中的随机风险模型,是近代应用数学的一个重要分支,也是当前精算学界的热门课题.经典的风险理论主要通过概率论和随机过程理论来研究风险模型的盈余过
摘 要:进行两次丙烯/丁烯无规共聚工业化试验,并进行对比。  关键词:丙烯 丁烯 共聚 聚合  一、丙烯-丁烯共聚目的及意义  1.意义  随着国内聚丙烯产能的迅速增加,产品市场竞争越来越激烈,开发共聚高性能聚丙烯已成为主要发展趋势。与丙烯/乙烯无规共聚产物相比,丙烯/丁烯无规共聚产物具有透明性高、刚韧平衡性好和二甲苯可溶物含量低等优点,可广泛应用于食品包装如CPP薄膜领域。  本项目制备丙烯/丁
本文主要研究了一类带加性白噪声和非线性阻尼(对速度)的Sine-Gordon方程的随机吸引子,并对其维数进行了估计,共分为三个部分:   第一章,总述,介绍随机动力系统的发展历史及本文
1952年,美国经济学家Harry M.Markowitz提出了均值-方差投资组合理论,从而奠定了投资定量化研究的基础。经过六十多年的发展,该理论已经成为现代投资组合理论的核心,在现代金融投
本篇文章主要是考虑以下非自治p-Laplacian系统的周期解的存在性问题.{d/dt(Φp((u)(t)))=▽F(t,u(t)),a.e.t∈[0,T]u(0)-u(T)=(u)(0)-(u)(T)=0这里p<1,Φp(X)=|x|p-2x,T<0并且有F:[0,T]×
本论文中所有的群均为有限群.   群G的子群H称为在G中s-拟正规的,如果H与G的每个Sylow子群P可置换,即HP=PH.群G的子群H称为在G中ss-可补的,如果G有一个子群T满足HT=G,且H∩T在