论文部分内容阅读
空间冗余构型机械臂的动力学与控制存在着其特殊性。七自由机械臂的动力学算法一般计算量大,且其控制中存在“自运动”问题。针对上述问题,本文主要研究内容包括:基于铰接体算法的空间机械臂正向动力学,冗余机械臂位置控制,基于增强混合阻抗控制的空间冗余机械臂力控制研究。本文首先对空间机械臂动力学建模进行综述,确定了本文动力学建模研究的思路;其次,由机械臂控制的综述确定了冗余机械臂控制的技术路线。为了克服空间机械臂正向动力学算法计算量大等缺点,本文研究了基于空间矢量描述的铰接体算法建立的空间机械臂的动力学模型,为了检验算法的正确性,本文在SimMechanics中建立空间机械臂的模型,二者仿真结果对比表明,该算法可以实时地计算空间机械臂运动情况,且该算法计算量小、计算效率高。为了有效的进行冗余机械臂位置控制,本文采用基于运动学的构型控制策略,选择臂角为构型控制中的运动学函数,以此参数化其“自运动”。为了检验算法的正确性,本文建立了空间七自由度机械臂的数值仿真系统,仿真结果表明,基于该算法可以有效控制冗余机械臂的运动。为了克服自由飞行空间机器人传统控制中能量消耗较多的缺点,本文反馈预估的机械臂对基座的扰动力至基座姿态控制系统中,进而达到协调控制的目的。在协调控制数值仿真系统中仿真验证了协调控制可以有效的减小能量消耗。为了克服基于传统阻抗控制无法进行精确的力控制,本文针对冗余机械臂采用结合构型控制以及混合阻抗控制的增强混合阻抗控制。在该控制策略中,采用基于加速度级的构型控制理论进行冗余分解。基于该控制策略可以在位置控制方向上保证柔顺性以及力控制方向上保证力跟踪特性。在冗余机械臂的增强混合阻抗控制数值仿真系统中仿真模拟机械臂完成辅助对接任务的情况,结果表明,其机械臂在力控制方向上可以精确地进行力控制。