论文部分内容阅读
硝酸铵(AN)作为一种常用的工业原料,在化肥、工业炸药以及火箭推进剂等领域都有广泛的应用。随着近几年AN爆炸事故的发生以及AN的非法使用,其热安全性和爆炸性能也得到了广泛的关注。为了提高AN的安全性能,许多科研人员的研究都集中在AN的热稳定性能上,但是热稳定性和爆炸性能两者之间的关联性研究也不多。晶体结构,制造工艺以及不同类型的添加剂对AN的热稳定性和爆炸性能的影响研究也不多。为此本文对AN的晶体结构、热稳定性和爆炸性能进行了系统的研究。实验中选取了复合肥,消焰剂以及相稳定剂中常和AN一起使用的尿素、磷酸二氢铵(MAP)、KCl和NaCl作为添加剂,利用了机械混合法和溶液混合法两种工艺制备了改性AN和铵油炸药(ANFO)。在溶液混合中,KCl中K+离子能完全取代AN中的NH4+离子,从而完全断裂AN的弱氢键并限制N03-离子的转动,8%的KCl能完全消除常温相变过程;Na+只能部分取代NH4+离子并且以参杂形式进入AN晶体,在一定程度上能提高Ⅳ(?)Ⅲ相变温度;而MAP的弱酸性不能完全断裂AN的弱氢键,因此反而会降低Ⅳ(?)Ⅲ相变温度。机械混合中,添加剂只能通过外界应力以及局部热交换等作用于AN,AN的晶体结构会受到一定的影响,但效果并不明显。AN的晶体结构研究表明:添加剂和混合工艺的不同会影响AN的重结晶过程和常温下AN的相变(Ⅳ(?)Ⅲ)过程。微观晶体结构的变化有可能会影响AN的热稳定性能和爆炸性能。利用DSC热分析实验对AN的热稳定进行了研究。对于机械混合制备的改性AN,5%含量的尿素能将AN的初始反应温度由204.33℃提高到289.10℃,尿素能有效地提高AN的热稳定性;MAP也能有效地提高AN的初始反应温度。尿素和MAP这类添加剂的分解产物(NH3)能够有效降低AN自催化因子(NO2)的浓度同时还能抑制AN初始热分解反应。10%含量的KCl能让AN的最大峰温值从286.75℃降低到263.12℃,同样NaCl对AN的热分解过程也具有一定的促进作用。氯化物提高了AN热分解中间产物[NH3N02+]的生成速率,因此对AN的热分解过程具有一定的促进作用。但氯离子对AN的催化作用受到酸性条件的影响,酸性条件下,氯化物对AN的热催化更加明显。在没有酸的存在条件下,氯离子的催化作用会受到一定的限制。随着氯化物含量的增加,氯化物将会提高AN的初始反应温度。溶液混合过程中,MAP和AN能形成复盐,影响氧化基团和还原基团的反应,从而提高了AN的热稳定性。对于氯化物,溶液混合过程中水含量的增加有利于酸的积累,因此溶液混合法并不适合用来提高AN的热稳定性。利用克南实验对改性AN的热敏感度进行了研究。尿素和MAP都能有效地抑制AN和ANFO的热爆炸。KCl和NaCl抑制AN和ANFO热爆炸的效果并不理想,需要添加30%以上含量的添加剂才能抑制AN和ANFO的热爆炸。克南实验结果表明:提高AN热稳定性的添加剂能有效地降低AN对高热作用的敏感度。利用联合国隔板实验结果对改性AN和ANFO稳定传播爆轰的能力进行了研究。AN-尿素(1:1)混合物仍然能稳定传播爆轰,50%含量的尿素仍然不能有效地抑制AN爆轰。而KC1和NaCl这类惰性消焰剂的抑爆效果较好。溶液混合工艺下,15%含量的KCl就能有效地抑制AN稳定传播爆轰。隔板实验结果表明:提高AN热稳定性的添加剂并不一定能有效地抑制AN的爆轰。在爆速实验中,AN的爆速随着粒径的减小呈增加然后下降的趋势。在20目-100目的范围内,AN的爆速由1.17km/s增加到1.61km/s,然后再降低到1.54km/s,爆速在60目-80目的范围内爆速达到最大。对于机械混合法,改性AN的爆速都是随着添加剂含量的增加而减少。但是对于溶液混合法,KCl和NaCl含量为5%的条件下,爆速分别为1.86km/s和1.98km/s,其爆速大于纯AN。但随着添加剂含量的增加,爆速降低幅度增大,抑爆的效果更加明显。