PBO纤维表面处理及对复合材料力学性能的影响

来源 :国防科学技术大学 | 被引量 : 0次 | 上传用户:trittt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
PBO纤维是一种有机高分子纤维,但具有超高强度、超高模量、超高耐热性和阻燃性,可成为复合材料的理想增强体。但是PBO纤维表面活性低,与复合材料树脂基体间的粘合性差,导致复合材料力学性能较差,制约了其在复合材料中的实际应用。因此,有必要对PBO纤维表面进行改性,改善PBO纤维与树脂基体界面结合状况,从而有效提升PBO纤维增强树脂基复合材料的综合力学性能。本文在文献调研的基础上,开展了酸刻蚀处理、伽马射线辐照处理、等离子体处理和偶联剂处理以及组合处理等方法对PBO纤维进行了表面改性研究,重点考察了上述处理方法对PBO纤维表面形貌、本体结构、单丝强度、与聚合物基体相容性等的影响,并对PBO纤维表面改性方法进行了优化,最终确定了优化组合处理方法,即伽马射线辐照处理—PPA刻蚀处理—涂覆偶联剂YDH560处理工艺。本文进一步开展了PBO纤维增强环氧树脂复合材料制备工艺研究。利用树脂溶液浸渍PBO纤维湿法缠绕工艺制备了单向预浸料带,采用模压工艺制备了连续PBO纤维增强的环氧树脂复合材料。考察了组合表面处理工艺对PBO纤维增强环氧树脂复合材料制备工艺性的影响,确定了复合材料制备工艺参数。为考察组合表面处理方法对PBO纤维增强环氧树脂复合材料力学性能的影响规律,本文测试了表面改性前后单向PBO纤维增强环氧树脂复合材料的拉伸性能、层间剪切性能和压缩性能。实验结果表明,PBO纤维增强环氧树脂复合材料的单向拉伸失效模式为纤维/树脂基体界面剪切破坏;表面改性后,复合材料的拉伸强度下降了8%;复合材料短梁剪切试样的断口表明,PBO纤维增强环氧树脂复合材料呈现多层剪切破坏,表面改性后,复合材料层间剪切强度高达43MPa,提高了26%;PBO纤维增强环氧树脂复合材料单向板压缩失效主要呈45°剪切失效,表面改性后,复合材料的压缩强度达到168MPa,提高了17%。上述研究表明,采用组合表面处理方法,PBO纤维增强环氧树脂复合材料界面性能得到较大改善,复合材料的综合力学性能得到明显提升。
其他文献
现阶段,随着社会的发展,我国的现代化建设的发展也有了很大的改善,科学技术的发展也突飞猛进.土地资源的管理和使用,关系到国家经济社会发展和稳定.尽管我国地域比较辽阔,但
水体微污染有机物对水生态和人类健康形成威胁,已引起关注,为解决这些难降解的微污染有机物,本论文分别采用微生物与化学方法制备了多价态生物锰氧化物(BioMnOx)和化学锰氧化物(
该文通过对再结晶动力学模型的解析,得到了静态再结晶、动态再结晶的发生分数以及奥氏体晶粒在轧制过程中的变化情况;通过将组织演变模型和温度模型的耦合计算,模拟出斯太尔
该文根据碱催化阴离子聚合原理,制备了单体浇铸(简称MC)尼龙,采用RIM技术获得了单向长碳纤维增强MC尼龙(简称C/MC)复合材料和三维编织碳纤维增强MC尼龙(简称C/MC)复合材料,经过反复
该文依托的课题为吉林省环保局重大科技攻关项目"高效水解酸化工艺处理有机废水的试验研究".作者在对水处理的传质机理进行系统总结和深入探讨的基础上,提出了高效水解酸化处
该论文首先对有机污染物在不同环境介质中的光化学降解研究作了较完整的综述,重点介绍了水溶液中不同形态的Fe(Ⅲ)化合物的光化学性质及其对水溶液中有机污染物的光降解作用
DNA甲基化是哺乳动物细胞中重要的表观遗传学修饰之一,大约70%-80%的CpG发生这种甲基化修饰。甲基化调节许多细胞生物学过程,对于哺乳动物的生长发育十分关键。异常的甲基化在许
嗜热微生物是指能够在50℃以上高温环境生长的一类极端微生物。嗜热微生物的发现与研究,为生物的进化、分类学研究以及工业应用提供重要的指导意义。长期以来,大多数嗜热微生物
喹诺酮类抗生素因为其抗菌谱广、药效良好等优点而广泛应用于人及牲畜的疾病治疗及预防。但由于不合理利用及滥用,这些药物母体可以经过多种途径最终进入环境。残留于环境中
铜作为一种重要的工业原料,在工业、农业、交通等领域内有看广泛的用途.随着经济的发展用量不断地加大,开采、冶炼和使用过程中都不可避免的造成废物的排放和残留,导致环境污