论文部分内容阅读
早在1952年,Alfred Hershey与Martha Chase合作利用噬菌体侵染细菌的实验,证实了生命的遗传物质是DNA而非蛋白质,与前人的肺炎双球菌转化实验一起,推翻了二十世纪早期生物学家所相信的蛋白质是遗传物质这一观点。这一发现是利用35S特异性标记的噬菌体蛋白质与32P特异性标记的噬菌体DNA,因为当时的观点认为,硫元素是蛋白质的特征元素,而核酸DNA中仅含有碳、氢、氧、氮和磷这5种元素。而近年来,科研人员在细菌的DNA的骨架上寻觅到了硫元素的踪迹,并把这种特殊的DNA修饰结构称之为DNA磷硫酰化修饰(phosphorothioation,PT)。进一步研究表明,这种新型修饰由5个修饰蛋白(DndABCDE)共同催化,将来自于半胱氨酸的硫原子序列特异性地取代DNA磷酸骨架上的非桥连氧原子。DNA磷硫酰化修饰修饰常常与DndFGH蛋白共同组成限制-修饰系统,以此来抵御外源DNA的入侵,保持自身遗传物质稳定。前期研究中,利用液相色谱-质谱联用技术,科研人员已经对来自于不同菌属的DNA中的磷硫酰化修饰情况,在d(XPSY)(X=A、T、C或者G,Y=A、T、C或者G)这一的二核苷酸水平上,进行了定性分析和定量检测,发现其修饰序列与修饰频率在不同细菌中的具有不同的修饰特征,但是,由于技术手段的限制,DNA磷硫酰化修饰所需的更长的保守基序,一直以来是一个研究难点,针对DNA磷硫酰化修饰的细菌基因组定位也一直是一个谜,而这一科学问题的回答,则可能是揭示DNA磷硫酰化修饰这一新型修饰的生理功能的突破口。本研究以Vibrio cyclitrophicusFF75为研究对象,通过第三代测序技术——单分子实时(single molecularrealtime,SMRT)测序技术,找到了在FF75中,DNA磷硫酰化修饰的核心基序列为5’-CPSCA-3’,我们没有找到更长的保守序列或者侧翼序列,但是其下游序列具有一定的偏好性,DNA磷硫酰化修饰倾向于发生在5’-CCAA-3’或者5’-CCAG-3’这样的序列上,而发生在5’-CCAT-3’上的概率最低;在FF75基因组上,仅有14%的5’-CCA-3’序列发生了磷硫酰化修饰,且其在FF75中呈现出一种单链修饰状态;在此基础上,我们绘制基于基因组水平的DNA磷硫酰化修饰图谱,对FF75中的DNA磷硫酰化修饰进行了基因组的精细定位,发现了其在基因组上随机、均匀的分布特征,且在不同细菌个体中,表现出异质性的特定,揭示了其部分、动态的修饰特征。此外,在本项工作中,我们还发现DNA磷硫酰化限制-修饰系统的功能能够与DNA甲基化依赖的限制-修饰系统产生相互影响。一方面,发生于DNA骨架的磷硫酰化修饰与发生在DNA碱基上的甲基化修饰可以共享同一段DNA序列,得到同时具有两种修饰的杂合结构d(GPS6mA),且其构型与细菌体内的DNA磷硫酰化修饰一样具有RP的构型;同时,在体外条件下,具有磷硫酰化修饰结构的DNA序列能够降低Dam甲基转移酶的甲基化效率;另一方面,本研究还发现DNA磷硫酰化限制系统是一种温度依赖的限制系统,其在低温条件下,dndFGH的转录水平会有所上升,而有意思的是这种低温依赖的磷硫酰化限制作用能够被甲基化的DNA阻碍,即DNA甲基化修饰能代替DNA磷硫酰化修饰,保护DNA免受DndFGH的限制作用。