论文部分内容阅读
大线能量焊接的出现极大的提高了船舶制造效率,但大线能量焊接条件下,焊接热影响区组织严重粗化导致钢的力学性能断崖下降,为解决焊接热影响区组织粗化这一问题,本论文针对工业生产的含Mg船板钢进行了一系列的实验研究。首先针对焊接线能量对船板钢HAZ冲击韧性的影响开展了包括冲击试验、断口分析和金相组织分析等一系列的研究。实验结果表明:在-20℃下,16mm和40mm厚的钢板在大线能量焊接后HAZ冲击功均超过160J,而25mm的冲击功为57.5J,但三者均达到了国标要求;16mm和40mm厚的钢板热影响区断口为典型的韧性断裂,25mm厚的钢板为准解理断裂;在金相组织方面,三种钢板热影响区均诱发了大量的晶内针状铁素体,使组织细化,甚至优于母材组织;25mm厚钢板热影响区冲击韧性相对较低的原因一方面是所承受热负荷较大,另一方面则是其母板原始组织相对粗大。其次为探明连铸坯中IGF的诱发机制,进行了冷却速率、钢中夹杂物尺寸及分布等因素对铸态组织中IGF诱发的影响研究。结果表明:对试验钢种而言,夹杂物的尺寸和分布是该类钢种铸态组织的决定性因素,而冷却速率对其影响不大;与钢板焊接热影响区中能够诱发IGF的夹杂物尺寸多为3μm以下相比,在铸坯中能够诱发IGF的夹杂物多为5~15μm。最后对比研究了温度对含Mg船板钢铸态和轧态组织的影响。结果表明:铸态组织中针状铁素体的温度转变区间在730℃-760℃之间,730℃诱发情况最佳;本实验钢由于采用镁处理,无论铸态还是轧态组织随着温度的升高奥氏体晶粒并未呈一直长大的趋势。