【摘 要】
:
蒲螨(Pyemotes)全部为昆虫外寄生螨,是隐蔽性、群居性害虫的潜在生物制约因子。蒲螨个体微小,体长仅200μm左右,可供分类鉴定的形态特征较少,分类体系尚不完善,尤其是对形态接近的种类缺少有效的区分方法。近年来基于DNA分子标记技术的应用,为物种的鉴定提供参考数据。本研究选用了9个蒲螨种群,每个种群随机抽取3-5个样本进行mtDNA-COI基因和核糖体ITS2基因克隆,通过对其序列分析来探讨蒲
论文部分内容阅读
蒲螨(Pyemotes)全部为昆虫外寄生螨,是隐蔽性、群居性害虫的潜在生物制约因子。蒲螨个体微小,体长仅200μm左右,可供分类鉴定的形态特征较少,分类体系尚不完善,尤其是对形态接近的种类缺少有效的区分方法。近年来基于DNA分子标记技术的应用,为物种的鉴定提供参考数据。本研究选用了9个蒲螨种群,每个种群随机抽取3-5个样本进行mtDNA-COI基因和核糖体ITS2基因克隆,通过对其序列分析来探讨蒲螨属种的鉴定及其系统发育,为蒲螨的分类提供分子生物学证据,主要结论如下:1、基于mtDNA COI基因序列分析表明,从蒲螨9个种群中都扩增出了453bp的COI基因片段,其中A+T含量平均为70.4%,显示出较强的AT偏倚。根据种群间COI基因进化分歧和系统发育树分析将球腹蒲螨群的6个种群分为3个独立的种,与生物学和生态学观察结果一致。2、利用COI基因序列对蒲螨9个种群进行物种鉴定,种间进化分歧在11.9%—17.1%,种内进化分歧为0-1.3%;通过系统发育分析,球腹蒲螨群种群5(SSXD)与小蠹蒲螨群亲缘关系近。3、采用直接测序法对核糖体DNA中ITS2区段序列进行测定和分析。最终从蒲螨9个种群中都扩增出了449-491bp左右的ITS2片段,G+C含量平均为32.0%。种的确定与COI鉴定种的结果一致,种间进化分歧7.0%-17.8%,种内进化分歧为0-0.6%。4、COI和ITS2在对Pyemotes进行物种鉴定时起到了相同的作用,成功将Pyemotes鉴定到种级水平。
其他文献
在小学阶段,图形及图形关系作为从物体的存在形式中抽象出来的基本概念,构成了小学数学中"图形与几何"领域重要的数学研究对象。几何诸多原始概念集中于图形的认识中。因此,在几何概念教学的初始阶段,深入研究并认识图形及图形关系,能帮助学生直抵图形本质,发展空间观念。从这一点来说,抓好图形的认识就是夯实几何概念教学的基底,也才能使发展学生的几何直观、推理能力、空间观念成为可能。
有限域上典型群的几何学是一类非常重要的代数和几何结构,很多学者利用各类几何空间构造了dz-析取矩阵,具有检错和纠错能力的Pooling设计的数学模型是所谓的dz-析取矩阵.对于一个d-析取矩阵来说如果对于某一列至少含有z个1不能被其他任意d列的并所覆盖,则此二元关联矩阵称为dz-析取的.我们知道一个dz-析取矩阵可以查z-1个错,纠[(z-1)/2]个错.如果对于起确定作用的试验给出其它限制条件,
锰锌铁氧体巨大的应用价值和长期的基础研究使得该类软磁铁氧体材料被广泛应用于计算机、网络通讯、宇宙航行等许多高科技领域,同时也成为凝聚态物理学和固态化学的一个研究热点。 本文的工作主要是采用化学共沉淀法制备MnxZn1-xFe2O4和α-Fe2O3纳米粉体;详细地研究了MnxZn1-xFe2O4纳米微粉和纳米晶块体的磁学性质,特别是系统研究了(MnxZn1-xFe2O4)1-y/(α-Fe2O
虽然分数阶微积分的研究已经有了300多年的历史,但是,将它们应用到动力系统还只是近些年的事情。研究表明,很多物理系统能表现出分数阶动力学行为,因此分数阶混沌系统的控制与同步已成为非线性领域研究的重点之一。特别是,由于分数阶混沌系统在保密通信等领域中的潜在应用前景,使得这方面的研究成为人们关注的热点。本文利用直接设计的方法,研究了分数阶混沌系统的同步。其内容分为四部分:(1)较详细的总结了前人的研究
2004年,G.Benkart和S.Witherspoon在文献[1]中引入并研究了双参数量子群Ur,s(sln).它是定义在代数闭域k上的结合代数,简记为U.本文对Uq(sln)的Lusztig Z[v,v-1]-型进行了推广,构造了U上的A=Z[r±1,s±1]-型,记做UA,它是代数U的子代数.本文研究了代数UA的基本性质及其Hopf代数结构,证明UA作为向量空间具有三角分解式UA(?)UA
植物激素ABA在植物生命活动中起着多种重要作用,它能通过调控细胞内复杂的代谢过程参与植物对干旱、盐碱和冷害等多种胁迫环境的应答。同时,ABA在植物发育过程中也起着非常重要的作用,包括种子贮存蛋白和脂类的合成,提高种子抗旱性,调控休眠和萌发过程以及植株再生等。本试验研究主要材料的最初来源是雌二醇诱导时获得的功能获得性甘露醇不敏感突变体。遗传学分析结果显示该突变体的表型能够稳定遗传。我们将之命名为ga
本文采用Sloczewski自由电子模型,考虑了磁性半导体既存在铁磁特性,同时又存在Rashba自旋轨道耦合效应的特点,在量子相干弹道输运理论的基础上,研究了铁磁体/绝缘体/铁磁半导体/绝缘体/铁磁体磁性双隧道结结构的自旋极化输运性质。对绝缘体处理时采用矩形势,即把势垒看作有一定厚度和高度的矩形势。在文中利用传递矩阵方法从理论上推导该磁性双隧道结结构中的隧穿系数公式,并讨论了Rashba自旋轨道耦
本文主要研究了ρ次抛物星形映照的系数估计与增长掩盖定理.全文共分三章.在第一章,我们概括介绍了多复变数几何函数论的发展背景,本文所用到的一些记号、定义及主要结果.在第二章,我们在复Banach空间中单位球B和Cn中单位多圆柱Dn上引入了ρ次抛物星形映照的定义,并分别讨论了ρ次抛物星形映照的系数估计.在第三章,我们通过计算得到了复Banach空间中的单位球B上ρ次抛物星形映照的增长掩盖定理.
设H是有限简单图,T是它的子图.图设计λKv(?)H是一个序偶(V,β),其中V是Kv的顶点集,而β为Kv中与H同构的若干子图的族(称为区组集),使得Kv中每条边恰好出现在β的λ个区组中.今将β中每个区组B分拆成B’和B\B’,其中B’同构于T.若D(H\T)={B\B’:B∈β}中的全部边可被重新安排成一族与T同构的子图(记为D(T)),那么(V,β(T)∪D(T))就恰为一个图设计λKv(?)
螺旋波是自然界中广泛存在的一种非平衡斑图形式,如心律失常后心肌中的电活动螺旋波、黏性菌聚集时形成的螺旋波斑图以及天体中的螺旋星系等,它涉及到物理、医学、力学、生物、数学、化学以及天文等众多学科。形成螺旋波的系统通常是非线性的,螺旋波态是远离平衡的、自组织的,因此螺旋波也为理论研究提供了许多难题。由于螺旋波研究在理论与实际应用中都有重要的意义,相关研究得到了广泛的开展,外力作用下的螺旋波动力学行为是