论文部分内容阅读
由大豆疫霉菌(Phytophthora sojae Kaufinann&Gerdemann, P. sojae)引起的大豆疫霉根腐病是大豆生产上的毁灭性土传病害之一。研究大豆疫霉根腐病的抗病机制,是培育广谱、稳定、高效、持久抗病品种的基础。microRNA(miRNA)是真核生物中发现的一类内源性的具有调控功能的非编码小分子RNA,通过碱基互补配对的方式识别靶标mRNA,并根据互补程度的不同指导沉默复合体降解靶标mRNA或者抑制靶标mRNA的翻译。miRNA在植物生长发育和病害防御中起着重要的作用。本研究首先证明植物基因沉默系统对卵茵的抗性具有重要的作用。利用同源搜索方法对栽培大豆中的miRNA进行预测;以大豆疫霉根腐病抗病、耐病和感病品种为材料,通过人工接种和miRNA芯片技术,鉴定与大豆疫霉菌侵染相关和抗病类型相关的miRNA;通过生物信息学方法预测miRNA的靶标基因并进行功能分析。根据miRNA在抗病、耐病和感病材料之间的表达差异,分析miRNA在抗大豆疫霉根腐病途径中的机制和作用,为培育和改良大豆疫霉根腐病抗性品种奠定基础。主要研究结果如下:1.植物基因沉默系统对卵茵抗性的作用利用烟草疫霉菌Pp025和辣椒疫霉菌Pc35接种拟南芥基因沉默突变体zippy, ago1-27、sgs3-11、rdr6-11,发现突变体的抗病性与野生型相比,略有增强。利用烟草瞬时转化系统,将p19注射至烟草叶片,然后接种Pp025,发现与对照GFP相比,病斑长度明显增长。利用发根农杆菌K599介导的大豆瞬时转化系统,将p19转入大豆,然后接种大豆疫霉菌P6497,发现转化p19的阳性根毛对疫霉菌的抗病性有轻微的下降。结果初步显示,植物的基因沉默系统与卵菌抗性之间存在着密切的关系。2.栽培大豆中miRNA的预测通过比对拟南芥、水稻、苜蓿等所有植物中已知的miRNA成熟体序列与栽培大豆的EST序列,经过层层严格筛选,鉴定到48条新的miRNA,并利用RT-PCR对预测的部分miRNA进行实验验证。使用植物靶基因预测软件psRNAtarget,将该48个miRNA与大豆的基因组数据库进行比对,寻找可能的靶标基因,一共获得323个潜在的miRNA靶标。根据基因的功能注释,发现靶基因编码产物类型多样,其中包括转录因子、抗性蛋白等。同时还分析了包含有候选miRNA的EST的来源,结果发现有部分EST与胁迫响应有关,推测来源于这些EST的miRNA可能受胁迫的调控。3.大豆中保守miRNA的表达分析选择7个保守的miRNA进行表达分析。8个大豆品种进行大豆疫霉菌P6497处理,通过Northern blotting技术,对这7个miRNA进行检测。结果发现,有6个miRNA在这8个品种中都有表达。4.与大豆疫霉菌侵染相关和抗性相关的miRNA的鉴定为了鉴定与大豆疫霉菌侵染相关的miRNA,我们利用生物芯片检测了三个对P6497具有不同抗性反应的大豆品种(Williams,感病品种;Conrad,耐病品种;Williams82,抗病品种,含有Rpsl-k)接种P. sojae前后miRNA的表达模式,找到97个受P. sojae调控的miRNA,同时分析了与抗性类型相关的miRNA.利用qRT-PCR对芯片中有显著表达的9个miRNA进行了验证,结果发现定量结果与芯片结果的一致性较高。5. miRNA靶基因的预测及功能分析通过BLAST比对,对miRNA的靶标进行预测,并与前人已发表的大豆-大豆疫霉菌互作的基因芯片数据进行比较,找到与miRNA表达趋势相反的靶标基因,并利用实时定量PCR方法进行验证。利用Gateway技术将与卵茵侵染显著相关的10个miRNA前体构建至植物表达载体pEarleyGate103中,并在烟草和大豆中进行遗传转化,初步结果表明过表达miRNA能影响大豆疫霉菌的致病性。通过上述研究,我们初步明确了植物基因沉默系统在抗卵茵病害过程中具有重要作用,鉴定了48个大豆新型miRNA并对它们的特性进行了分析,同时利用基因芯片技术分析了所有已知植物的miRNA在大豆不同抗性品种中的表达规律,发现了一批与疫霉根腐病抗性和病原菌侵染相关的大豆miRNA,并对它们的靶标基因进行了预测,实验证明大豆miRNA可以调节这些基因的表达来进一步影响大豆的抗病性。