论文部分内容阅读
气候系统是一个复杂的非线性系统,(不)可预报性是其固有的属性。研究表明,气候系统年际到年代际的可预报性主要来自海洋。海洋作为气候系统的重要组成部分,其海表面温度(SST)是衡量气候平均和变率的一个重要因子。因此,研究全球海表面温度SST的年际和年代际可预报性具有重要意义,可以为预测未来的气候变化提供依据。气候变量的可预报性定义为可预报分量的方差与总方差的比值。与经验正交函数(EOF)分解类似,根据可预报性最大的原则,可以将气候变量分解为可预报成分和空间结构的线性组合。本文分别利用NOAA扩展重建的ERSST资料和GFDL模式CM3工业化革命前试验模拟结果研究SST的年际、年代际可预报性和可预报成分,从而寻找海洋中存在年际和年代际可预报性的主要区域。通过对观测的月平均SST进行分析可知,月平均全球SST的可预报性为3个月,第一可预报成分的可预报性为2年以上,空间上表现为北太平洋和北大西洋的异常增暖,表征了与AMO相似的SST气候态的长期波动特征,第二三可预报成分的可预报性为6个月左右。年际可预报性主要集中在热带太平洋,热带太平洋SST的可预报性为4个月,可预报成分具有与ENSO类似的结构,均呈现热带中东太平洋的异常增暖,其中第二可预报成分与Nino3指数相关较高。因此,热带太平洋SST的可预报性来自ENSO.通过对CM3模式模拟的工业化革命以前的年平均SST进行分析可知,全球SST在前置时间为1年时,预报技巧为0.55。SST的年代际可预报性主要集中在中高纬度。北太平洋、北大西洋SST的可预报成分具有5年以上的可预报性,并呈现明显的年代际变率,北太平洋SST第二可预报成分与太平洋年代际振荡PDO有一定的相关,北大西洋SST第二可预报成分与大西洋多年代际振荡AMO相关较好。综上所述,SST的年际可预报性主要在热带,并且与ENSO有一定的联系,而SST的年代际可预报性主要在中高纬度,如北太平洋、北大西洋,年代际可预报性与太平洋年代际振荡PDO以及大西洋多年代际振荡AMO有一定的相关。