论文部分内容阅读
作者筛选得到一株能显著抑制白色假丝酵母(Candida albicans)生长的菌株,通过测序确定其为解淀粉芽孢杆菌(Bacillus amyloliquefaciens ZJU-2011)。论文首先在5L罐中进行发酵工艺优化,确定发酵条件为:通气量500 L/h,搅拌转速500 r/min,接种量10%(v/v),装液量为60%(v/v)。抗真菌效价在30 h时达到了6.9×103 U/mL。进一步对工艺进行3T罐放大,效价达到了8.5×103 U/mL。在此基础上采用色谱技术对抗真菌化合物进行分离纯化,首先利用乙醇沉淀和大孔树脂吸附去除了可溶物中约84.6%的杂质。再通过反相层析获得抗真菌有效部位,进一步通过凝胶过滤层析,得到两个高纯度的组分。最后利用MS和NMR确定这两个抗真菌化合物为bacilysin和chlorotetaine。随后开发了一条适合于规模化提取bacilysin的低压色谱工艺,产品回收率达到76%以上,纯度达到95%。体外抑菌试验测定了bacilysin对6株常见病原真菌的最低抑菌浓度(MICs),结果表明他们对试验菌株具有明显的抑制效果(MICs在0.9-7.8μg/mL之间),其中对克鲁氏假丝酵母抑制效果最佳。急性毒性实验显示bacilysin对昆明种小鼠的半致死量(LD50)达到135.3g(bacilysin)/kg。体外肝微粒代谢实验拟合了bacilysin的代谢模型。为了明确bacilysin的抑菌机理,对来源于Candida albicans的靶酶-葡萄糖胺-6-磷酸合成酶(Gfa)实现了高效异源表达。通过比较发现N末端的标签会严重影响其转氨酶的活性,并且bacilysin对C-His Gfa的转氨酶活性抑制效果更强,而对N-His Gfa的抑制作用则显著变弱。反应动力学的研究发现:bacilysin与靶酶之间的相互作用是一个线性混合型抑制反应。bacilysin能够直接与靶酶发生作用,抑制其转氨酶活性。进一步,通过分子模拟对bacilysin抑菌机理进行了模拟。首先,对构成bacilysin的非蛋白质氨基酸-anticapsin和bacilysin的跨膜转运过程进行了模拟。通过对接发现bacilysin能够以合理的构型稳定地存在于转运蛋白的内部,而anticapsin不能与转运蛋白发生有效的作用。动力学模拟显示,当体系达到平衡状态时,bacilysin能与转运蛋白形成稳定的复合物。特别的是,仅在bacilysin与转运蛋白的复合物结构中,发现了影响转运的盐桥(Glu403与配体的N末端氨基之间)。其次,对anticapsin和bacilysin与Gfa之间的相互作用进行了模拟。通过对接发现bacilysin和anticapsin都能在Gfa转氨酶的活性中心以一种相对合理的构型存在。该过程的动力学模拟显示整个的过程中bacilysin与Gfa的相互作用更强。当体系达到平衡时:Gfa的催化残基Cys会朝向bacilysin发生一定角度的偏转,然后Cys上的-SH会对bacilysin中羰基C进行亲核攻击,形成C-S共价键。由此可以认为bacilysin由于更加高效的跨膜转运效率导致了其比anticapsin更高的抗真菌活性。最后,论文构建了一个能特异性无痕敲除ZJU-2011中bacD基因的复制型质粒-pBAC-CE以高效生产anticapsin。通过对ZJU-2011的感受态制备以及其电转条件进行优化,确定最佳电转条件:菌体OD600 0.8-0.9,电场强度2.5 kV,电阻200 Ω,复壮时间4 h。在此条件下,将经过Sad线性化的pBAC-CE质粒导入到ZJU-2011感受态细胞中。通过二次同源重组得到了敲除bacD基因的工程菌,通过产物分离及HPLC-MS认为其分子结构应为anticapsin。