论文部分内容阅读
社会经济的发展使数据的规模和复杂程度与日俱增,传统的预测方法受到了前所未有的挑战。上世纪七、八十年代的两大新兴理论——统计学习理论与灰色系统理论的产生为解决复杂系统的预测问题提供了新的理论基础和技术支持。在前人研究的基础上,本篇博士学位论文将灰色预测理论和支持向量机有机结合起来,提出了几种实用的解决复杂系统的预测方法,并将其运用于经济、金融数据的分析与预测,一系列试验结果证明了这些方法在实践中能取得令人满意的效果。论文以社会经济数据为研究对象,以支持向量机的性能、效率和灰色系统理论及应用为主题展开研究。首先,根据部分经济数据具有贫信息、高噪声、不稳定和非线性的特点,结合灰色系统理论,采用含边值修正的灰色模型进行预测,获取残差序列后运用支持向量回归(SVR)方法对模型进行残差修正得到复合的灰色支持向量回归模型。在支持向量回归中构造具有自适用性的动态惩罚参数Ci替代传统SVR中的不变参数以提高模型的准确性,同时构造算法决定ε以平滑过度调节。该方法在广东省工业生产指数(IGIP)和另一地区工业生产总值(TIOV)的两项试验中获得了较好的预测效果。提高学习效率的一种直接途径是减少学习问题的规模。全局支持向量回归机(Global-SVR)在大样本数据集中计算效率低下,局部方法便应运而生。将局部支持向量回归机与灰色系统理论有机结合起来,用灰色关联度作为局部邻域函数构造的局部灰色支持向量回归机(LG-SVR)具有一定的理论价值。优化过程中采用留一法评估学习机的泛化性能、模式搜索法选择模型参数。三个真实的社会经济数据预测试验结果表明:该方法不但加快了运算速度,而且提高了预测精度。现实生活中存在相互关联、相互制约的多因素系统,其预测具有相当的难度。为解决多变量灰色模型MGM(1,n)在预测时有时存在大误差的问题,本文根据灰色系统和支持向量机的相关理论,将多变量MGM(1,n)模型与多元核支持向量回归机(MSVR)有机结合起来,构造多变量灰色支持向量回归复合模型(MGM-SVR)来提高多变量经济时间序列的预测精度。对经济状态多因素序列和股票多因素序列的实证分析表明复合模型具有比较理想的效果,适合于多变量相互影响、相互制约的状态分析与预测。在线预测是当今社会经济发展的必然要求。在批量学习模式研究的基础上本文提出了灰色支持向量回归自适应在线模型。借鉴当前在线核学习理论的研究成果,将灰色在线自适应预测与在线核学习结合起来进行研究。一系列经济数据试验的结果表明:灰色支持向量回归自适应在线模型以较多的学习时间能获得较高的预测精度,在选取合适灰色建模数据长度情况下,其学习时间可迅速减少。在线学习的显示更新与隐式更新及其SMD调节虽在学习时间上具有优势,但学习泛化性能的提高不明显。为迅猛发展的社会经济数据提供准确及时的预测方法必将为宏观经济规划提供重大技术支持,本论文在此方面做了有益的尝试,所得成果并不局限于经济预测领域,其构造思路与相关技术亦可进行其他研究与应用。论文所做工作丰富了数据分析与预测的理论与方法,对现实问题具有一定的指导意义。