【摘 要】
:
激光表面淬火是一种利用高能密度激光束扫描金属工件,使其表面瞬间形成奥氏体,随后在快速冷却过程中获得含有细小马氏体组织硬化层的热处理技术。在工件体积小、拆卸难度大、受热易变形等复杂工况下具有传统淬火技术无法替代的优势。本文重点从两个方面探究了激光表面淬火过程中不同加工参数和冷却方式,对W6Mo5Cr4V2高速钢残余应力场和温度场分布以及微观晶粒尺寸的影响规律。首先,应用Procast软件模拟均匀分布
论文部分内容阅读
激光表面淬火是一种利用高能密度激光束扫描金属工件,使其表面瞬间形成奥氏体,随后在快速冷却过程中获得含有细小马氏体组织硬化层的热处理技术。在工件体积小、拆卸难度大、受热易变形等复杂工况下具有传统淬火技术无法替代的优势。本文重点从两个方面探究了激光表面淬火过程中不同加工参数和冷却方式,对W6Mo5Cr4V2高速钢残余应力场和温度场分布以及微观晶粒尺寸的影响规律。首先,应用Procast软件模拟均匀分布激光点热源作用下的表面淬火过程,对比两种冷却条件下,对流换热系数与初始水温对晶粒细化效果的影响。接着,借助ANSYS Workbench仿真模拟软件,采用移动高斯热源模拟激光表面淬火过程,探究激光加工参数对温度场和残余应力场分布的影响。模拟结果及主要结论如下:激光功率对晶粒细化效果的影响较大,随着功率增大,晶粒尺寸有明显细化趋势;激光功率密度是影响硬化层分布形态的主要因素,在激光功率一定的条件下,采用均匀分布的激光热源能有效改善硬化层厚度分布不均的问题。冷却速度是产生残余应力的主要原因并且对晶粒细化效果影响较大,水冷条件下,冷却速度达到1.3×103℃/s以上时晶粒细化效果明显,残余应力主要集中在光斑中心区域,平均晶粒尺寸可达到5.4μm。对比了激光加工参数对温度场分布以及残余应力的影响,其中激光功率和光斑尺寸对温度场分布和残余应力的影响较大。在一定范围内,温度峰值与残余应力均随激光功率的增大而增大,残余应力随激光功率的增大而减小,增大光斑尺寸温度峰值下降明显;增大激光功率热影响深度明显加深,激光光斑和扫描速度对厚度方向上的热量分布影响较小。
其他文献
随着管材在各行业的应用范围不断扩展,对生产厂家的要求也逐渐提高。焊接钢管的质量与产量的矛盾逐渐凸显,这对生产质量与产量的协调发展提出了巨大挑战。随着电磁冶金技术在钢铁行业的应用,逐渐改善了某些特有的缺陷,但经过调研,该技术的应用仍存在固有集肤效应、邻近效应等所致的产品缺陷,这极大地限制了焊管在恶劣环境下的作用发挥。为改善这种缺陷,本文提出一种精密加热技术,即将钢管的焊接过程和热处理两道工序融合进行
卷板机经历了从两辊到三辊再到四辊的发展过程。目前,传统四辊卷板机技术已经相当成熟,经常使用的四辊卷板机有侧辊直线式和侧辊弧线式卷板机等。但是对于对称式四辊卷板机的研究还比较少,对称式四辊卷板机由于其结构的特殊性能够在运转的过程中进行反转,使得成形件剩余直边量大大减少,在大批量的生产制造过程中能够节省材料提高经济效益。现有的对称式四辊卷板机理论模型误差较大,对实际生产过程的指导意义不大,因此本文给出
板料拉深作为冲压成形的重要工序之一,在实际生活中被广泛应用于汽车、机械、电子等行业。压边力是拉深成形的重要参数,合理的压边力控制技术能够有效改善成形制件的质量。基于电控永磁技术的新型压边方法利用磁力为板坯提供压边力,将动力、传动和执行部件集于一体构成独立于压力机的加载系统,实现了独立加载压边力,且在一定程度上简化了模具结构。电控永磁压边方法通过对励磁线圈通入脉冲电流以改变电控永磁吸盘的磁路方向,实
剧烈塑性变形工艺(Serve Plastic Deformation,SPD)采用大应变细化材料组织,提高材料力学性能。SPD工艺一般都很难做到大尺寸试样与高效率细化晶粒的统一。本文提出一种镦-扭剧烈塑性变形新工艺,采用镦粗与高压扭转交替变形的方法使材料发生变形,用来制备大尺寸超细晶材料。采用有限元方法对5A06铝合金镦-扭剧烈塑性变形工艺进行模拟,并优化工艺参数,最后进行工艺试验,制备了力学性能
薄壁或极薄壁弯管件具有轻量化、低消耗、结构性能好等特点,被广泛应用于气液体传输管线路、航空航天、船舶等重要领域。但由于管材内部中空的结构特点和弯曲成形过程中金属流动的不均匀性,使薄壁弯管成形件极易发生起皱、破裂及横截面畸变等缺陷。对此,本文研究了一种适用于金属薄壁或极薄壁管材的充液弯曲成形新工艺,为极薄管材弯曲提供了新的成形方法。该工艺使用可变加载压力的液体对管材的内部进行支撑,管材两端施加拉力和
钢锭作为大型锻件生产的上游产业,其质量直接影响后续的生产锻造过程甚至是钢材成品质量。长期以来,由于检测技术难度大等原因,钢锭一直在内部缺陷未知的情况下进入后续生产环节。由于缺乏完善的钢锭质量标准,锻造工艺的编制几乎完全凭借经验的积累或相关文献的数据,对于钢锭冒口、水口切除无确切依据,钢锭利用率低。因此通过超声无损检测的方式对钢锭进行内部缺陷检测,从而实现对缺陷的定位、定量、定性具有非常重要的意义。
如今,世界各国都面临环境恶化、资源枯竭的问题,这为我国资源丰富的镁及其合金提供了所未有的发展机遇。镁合金被誉为“二十一世纪绿色工程材料”,除是目前最轻的金属结构材料外,还具有比强度、比刚度高和良好的电磁屏蔽性能等优点,因而在航空航天、轨道交通和3C等领域具有广阔的发展空间和应用前景。然而,镁合金具有密排六方晶体结构,容易启动的滑移系较少,导致其塑性低和室温成形性较差,并且加工工艺易导致变形后的材料
固体颗粒介质成形(Solid Granule Medium Forming,简称SGMF),是在传统软模成形基础上提出的一种把固体颗粒作为传力介质来代替刚性模具的新型软模成形工艺。该工艺充分发挥了颗粒介质的特点,为具有复杂截面板材零件的冲压成形提供了新思路;中间屏蔽罩作为真空灭弧室中保证内部元器件不受污染的关键零件,针对该零件几何结构具有复杂截面形状特征成形困难的问题,本文提出一种颗粒介质复合拉深
纯铜具有优异的导电、导热等性能在众多科学领域被广泛使用,但由于硬度低、强度差等缺陷会制约其进一步的应用,因此通过表面改性技术向纯铜表面加入其他金属元素从而改善其性能变得尤为重要。针对铜和镍无限互溶特性以及激光熔覆具有高能量密度和温度骤升骤降特点,能有效解决该问题。但激光熔覆过程中的温度以及残余应力对试件加工性能影响极大,为了研究多层多道激光熔覆中熔覆层及基体的温度与残余应力分布以及镍含量对熔覆层性
近年来,TRIP双相不锈钢以Mn-N代Ni不仅降低了成本,而且其在变形过程中可通过马氏体相变实现TRIP效应,提高了材料的塑性变形能力,其在轨道交通车体生产领域具有巨大的应用潜力。双相不锈钢在成形复杂结构件或者已成形的结构件在服役过程中会承受循环载荷,局部位置会经历循环弹塑性变形,材料在循环载荷下会表现出与单调加载明显不同的循环变形特性,而TRIP双相不锈钢在变形过程中还会产生马氏体相变,使得其循