论文部分内容阅读
第一部分3.0T3D-TOF MRA对动脉瘤性蛛网膜下腔出血及良性蛛网膜下腔出血的判断价值:与DSA的对照研究目的:明确三维时间飞跃磁共振血管造影(3D-TOF-MRA)的容积重建技术(VR)在检测颅内破裂动脉瘤及诊断良性蛛网膜下腔出血中的准确性。方法:对438例自发性蛛网膜下腔出血病例进行前瞻性研究。以2D的数字减影血管造影和容积再现(3D)的数字减影血管造影作为诊断的金标准。164个病人被排除在外。根据VR3D-TOF-MRA获得患者动脉瘤有无、数目、位置、大小等指标,与DSA结果对照,计算出准确度、灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)。将良性蛛网膜下腔出血病例首发及随访VR3D-TOF-MRA结果与DSA对照,并根据阴性预测值高低,推断排除性诊断的准确性。结果:在所有274例研究病例中,三维数字减影血管造影技术显示,其中175位病人共有208个动脉瘤(63.9%),99位病人没有罹患动脉瘤。VR3D-TOF-MRA在以病人为基础评价的检测中的准确度为92.7%、灵敏度97.1%、特异性84.9%、阳性预测值91.9%和阴性预测值94.4%。以动脉瘤为基础评价,其准确度为90.5%,灵敏度为94.8%,特异性为81.7%,阳性预测值为91.3%,阴性预测值为88.5%。且VR3D-TOF-MRA对动脉瘤大小的评价与DSA对照得到了相似的结论。在25例PNSH及23例cSAH的DSA检查中,结果均为阴性。其中1例MRA疑似动脉瘤,经DSA检查得到了排除。结论:3.0T VR3D-TOF-MRA准确检测出了颅内破裂动脉瘤的存在。高阳性预测值和高阴性预测值表明:3.0TVR3D-TOF-MRA作为一种无对比性、无创伤、无放射性的诊断手法可能在诊断和筛查颅内动脉瘤及判别良性蛛网膜下腔出血方面取代数字减影血管造影(DSA)。第二部分中脑周围非动脉瘤性蛛网膜下腔出血及后循环动脉瘤破裂出血的影像学比较目的:比较中脑周围非动脉瘤性蛛网膜下腔出血与后循环动脉瘤破裂出血的影像学异同,为蛛网膜下腔出血属性的早期判断提供信息。方法:回顾性分析两组病例。一组为25例我院2007年1月至2013年12月DSA确诊为PNSH的病例。第二组为同期25例DSA证实后循环动脉瘤破裂出血病例,比较其一般资料,CT表现(包括部位、累及部位数)及DSA结果。两组患者一般资料无统计学差异。结果:25例PNSH中位于环池者20例,鞍上池5例,四叠体池2例,小脑幕2例。DSA均无阳性发现。25例后循环动脉瘤,其中基底动脉瘤12例,大脑后动脉瘤5例,椎动脉瘤4例,小脑后下动脉瘤3例,小脑上动脉瘤1例。破裂出血中位于环池9例,鞍上池8例,四叠体池1例,小脑幕2例,大脑镰3例,脑沟9例,侧脑室7例,纵裂池3例,侧脑室后角7例,四脑室6例,三脑室3例,脑内1例。两种SAH的好发部位与累及范围有明显差异(P<0.05)。两组患者Hunt-Hess分级及Fisher评分经统计学计算亦有明显统计学差异。25例PNSH患者的危险因素经Logister回归分析,认为高血压是其危险因素。结论:PNSH与后循环动脉瘤破裂出血的好发部位不同,累及范围较小,预后好。早期进行血管造影是寻找病因的必须手段。第三部分破裂或未破裂动脉瘤在动脉瘤形成前后的血液动力学变化初探目的:探求采用血管表面修复技术模拟动脉瘤生长前的状态,对破裂或未破裂动脉瘤在动脉瘤形成前后的血流动力学变化分析的可行性。方法:通过脑血管的三维数字减影血管造影原始图像采集数据,重建得到的颅段颈内动脉的几何形状,数据建模后,利用基于三维体积的有限元模型,分别在“有瘤”和“去瘤”状态下,进行流体力学仿真分析。对动脉瘤瘤体内部以及动脉瘤形成位点的血流动力参数,如壁面切应力(WWS),血流速度,流线,管壁压力,以及壁面切应力梯度(WSSG)进行分析。结果:在“有瘤”的情况下,对动脉瘤颈、动脉瘤体和动脉瘤顶的血流动力学研究分析表明,在两种模型中,远端动脉瘤颈承受的壁面切应力(WWS)最大且血流速度最快,而动脉瘤顶承受的壁面切应力(WWS)最小且血流速度最慢。仅在破裂的后交通动脉动脉瘤模型中发现有射流和狭窄冲击阈的存在,并且动脉瘤顶部的管壁切应力梯度(WSSG)具有更为显著的改变。在两种模型下的血流动力分析都表明,处于动脉瘤形成前的“去瘤”状态下,动脉瘤形成区域承受着急剧升高的管壁切应力、切应力梯度以及急剧升高的血流速度。结论:实验数据表明,运用血管表面修复方法对患者已破裂的动脉瘤或未破裂的动脉瘤进行血流动力分析是可行的、经济且简易的。我们的初步结果显示,在动脉瘤形成之前,动脉壁承受着较大的壁面切应力(WWS),较高的壁面切应力梯度(WSSG)和较快的血流速度。然而,在破裂的动脉瘤中,可能观察到更加复杂的流动方式(如射流和狭窄冲击阈)。