论文部分内容阅读
模数转换器已经成为现代电子系统中至关重要的模块,它将现实世界中连续的模拟信号转换为离散的数字信号,以便让数字信号处理系统可以高效地处理和分析数据。近年来,随着通信技术、云计算、大数据和医疗电子等技术的快速发展,模数转换器的需求越来越大,并且所需满足性能指标也越来越高。低功耗、低成本自始至终都是集成电路设计的热点和难点。本文围绕超低功耗、高精度逐次逼近式模数转换器中几个关键模块研究展开。包括电容式数模转换器失配校准、逐次逼近逻辑数字延迟的优化和低噪声比较器的设计等研究方向去进行,提出了或改进了用于逐次逼近式模数转换器中的降低功耗、提高精度和提升速度的技术手段。论文提出了一种新颖的电容式数模转换器失配数字域前台校准算法,并流片测试验证了该算法在低功耗、高精度逐次逼近式模数转换器中的有效性。主要工作和研究成果简述如下:论文在对现有逐次逼近式模数转换器中电容式数模转换器失配校准技术的分析与总结的基础之上,提出一种数字域前台校准算法。该算法结合冗余位电容和电容式数模转换器自身低位电容测量电容所对应的误差电压。在数字域,根据所测量的电容误差对权重进行校准。本文提出的算法具有无需使用额外电容式数模转换器和面积小的优点。针对高精度逐次逼近式模数转换器中功耗和噪声问题,采用了悬空电容式数模转换器架构。它使得逐次逼近式模数转换器的核心电源电压维持在正常电压的情况下,可以量化更大的输入信号电压范围,从而增加噪声裕度,降低整体功耗。对于本文中的设计,相比直接采用高电源电压供电方式,该架构能降低逐次逼近式模数转换器34.2%功耗。论文针对悬空电容式数模转换器带来的失调电压过大问题,提出了一种改进的悬空电容式数模转换器架构。针对高精度逐次逼近式模数转换器中电容式数模转换器的共模电压的功耗问题,提出了一种无共模电压驱动器技术。它利用电容式数模转换器本身以及电源得到共模电压,从而去掉共模电压电路,能够降低整体功耗6%。该技术可应用到悬空电容式数模转换器架构中。对此电容式数模转换器架构进一步分析,发现有额外的失调误差和增益误差的问题。针对这一问题,论文对所提出的校准算法做了改进。针对逐次逼近逻辑延迟的问题,研究了开窗式异步逐次逼近逻辑。在此基础之上,提出了一种改进的结构,避免了开窗式异步逐次逼近逻辑中由于锁存器失调电压带来的误判。此外,论文针对高精度逐次逼近式模数转换器中比较器的噪声、失调和功耗进行分析。在降低噪声的问题上,降低比较器预放大器带宽与提高跨导等效。最后,采用0.18μm CMOS工艺设计和实现了精度为16 bit、采样率为1 MS/s的逐次逼近式模数转换器,芯片面积约为1.58 mm×1.6 mm。流片测试结果显示:芯片功耗为6.75 mW。其静态参数DNL和INL分别为-0.86/+0.97 LSB和-1.74/+2.46 LSB。其动态性能为,当输入满摆幅的10 kHz信号时,SFDR达到94.33 dB,SNDR分别为86.16dB。FoM_S和FoM_W分别为164.9 dB和0.41 pJ/conv.-step。测试结果显示,在相近采样率的16 bit模数转换器中,该芯片处于国际上先进和国内领先的地位。