论文部分内容阅读
本论文研究了不饱和羧酸盐甲基丙烯酸锂(LiMAA)对乙烯-醋酸乙烯酯橡胶(EVM)的增强效果,研究了EVM/LiMAA混炼胶的硫化性能以及硫化胶的力学性能、交联结构和形态结构等。本论文研究了稀土化合物氯化镧(LaCl3)对EVM/LiMAA硫化胶力学性能、电阻率和热稳定性以及交联结构的影响,探索了LaCl3在硫化胶中的作用效果和机理。通过原位合成技术在EVM纯胶中生成LiMAA,研究结果表明,LiMAA在EVM混炼胶的硫化过程中起了助交联剂作用,随着LiMAA生成量的增加,硫化速度和硫化程度大幅度增加。在硫化剂DCP用量为3份、LiOH/MAA的摩尔比为1/1的条件下,LiMAA生成量为30份时,原位生成LiMAA增强的EVM硫化胶具有十分优异的力学性能,其拉伸强度、100%定伸应力、扯断伸长率和撕裂强度分别可达到30.9MPa、12.2MPa、383%和93.4kN·m-1。扫描电子显微镜(SEM)分析表明,原位合成的LiMAA在EVM硫化胶形成直径约101~102nm的粒子团。选用具有较好综合力学性能的EVM/LiMAA(100/30)体系为基体,研究稀土化合物LaCl3对硫化胶性能的影响。低添加量的LaCl3对EVM/LiMAA硫化胶的力学性能影响较小,而高添加量的LaCl3会显著降低硫化胶的大多数力学性能。LaCl3的加入,显著提高了EVM/LiMAA硫化胶的热空气老化性能,一定程度上提高了硫化胶的热稳定性。当LaCl3用量超过10份时,老化后硫化胶的拉伸强度和扯断伸长率的保持率大于90%。LaCl3的加入显著降低了EVM/LiMAA硫化胶的电阻率。当LaCl3用量为10份时,EVM/LiMAA(100/变量)硫化胶的体积电阻率降低了两个数量级左右。随着LaCl3用量增加,EVM/LiMAA(100/30)硫化胶体积电阻率呈先减小后增大的变化趋势,最低可达到3.00×1010Ω·cm。这表明LaCl3的加入使得硫化胶由绝缘性物质转变为抗静电性物质,但加入量过大反而不利于硫化胶电阻率的降低。因为稀土离子具有强吸水作用,所以本文考察了添加LaCl3后硫化胶体积电阻率随吸水率增大而变化的规律。结果表明,随着吸水率的增加,硫化胶的体积电阻率急剧下降,硫化胶由抗静电性物质转化为导电性物质。加入LaCl3的硫化胶吸水率高于10%时,体积电阻率可达104Ω·cm左右。核磁共振(NMR)及傅立叶变换红外光谱(FTIR)分析结果表明,在EVM/LiMAA/LaCl3硫化胶中La3+可能与MAA-发生了配合作用。这将会减弱Li+与MAA-之间的作用,导致EVM/LiMAA/LaCl3硫化胶中Li+比EVM/LiMAA中的Li+更自由,从而降低EVM/LiMAA硫化胶的电阻率。