论文部分内容阅读
以魏家地煤矿东1100综放工作面运输顺槽为研究对象,综合采用实验室实验、理论分析、数值模拟、工业性试验等研究方法对极软特厚煤层拱形沿空掘巷围岩破坏机理及控制展开系统分析,着重讨论了煤层的开采厚度、硬度对基本顶侧向断裂位置、采空区侧向支承压力的影响规律,确定了煤层平均开采厚度下煤柱合理宽度,并开展了工业性试验分析。主要研究成果如下:(1)基于弹性地基梁理论,建立“直接底-煤层-直接顶”Winkler地基梁力学模型,推导了沿空巷道基本顶弯矩表达式和基本顶侧向断裂位置表达式,分析了煤层开采厚度、硬度对基本顶断裂位置的影响规律;揭示了煤层开采厚度增加或煤层硬度减小均导致地基刚度减小、基本顶最大弯矩增加,且基本顶最大弯矩位置随地基刚度减小向煤层深部转移。基于东1101工作面地质条件,确定了煤层开采厚度为8~24m时,基本顶侧向断裂位置为7.735~13.125m。(2)揭示了东1100综放工作面运输顺槽侧向支承压力与煤层开采厚度、硬度的影响规律。在煤层开采厚度为8~24m内,中硬及硬煤层条件下,随煤层开采厚度增加,侧向支承压力峰值位置逐渐远离采空区边界,峰值与煤层开采厚度呈负相关。软煤层条件下,随煤层开采厚度增加,峰值位置逐渐远离采空区边界;当煤层开采厚度小于12m时,侧向支承压力峰值与煤层开采厚度呈负相关;当煤层开采厚度大于12m时,侧向支承压力峰值基本不变。煤层硬度对侧向支承压力峰值位置影响较大;当煤层开采厚度小于17m时,侧向支承压力峰值与煤层硬度呈正相关;当开采厚度大于17m后,侧向支承压力峰值与煤层硬度呈负相关。(3)东1100综放工作面煤层平均厚度为18m,基于“直接底-煤层-直接顶”Winkler地基梁力学模型计算得出,基本顶侧向断裂位置为11.458m;通过极限平衡区计算公式得出应力极限平衡区宽度为11.417m,两者结果基本一致,表明了建立的“直接底-煤层-直接顶”Winkler地基梁力学模型科学准确。(4)东1100综放工作面煤层开采厚度平均为18m,揭示了煤柱不同宽度(3~12m)下极软特厚煤层综放沿空巷道围岩破坏机理。靠近煤柱侧顶板主要为拉剪破坏,靠近实体煤帮侧顶板及实体煤帮主要为剪切破坏,煤柱帮主要为拉剪破坏。随煤柱宽度增加,煤柱内垂直应力集中系数从1.2增加到3.1,受煤柱宽度影响较大;实体煤帮垂直应力集中系数从2.3增加到2.8,受煤柱宽度影响较小;巷帮剪应力作用效果增强,顶板拉应力作用效果增强。当煤柱宽度为8m时,煤柱内出现较稳定承压区,且宽度大于1.5m,满足支护需要,故区段煤柱合理宽度为8m。(5)提出了“高强度螺纹钢树脂锚杆+锚索补强+锚网”联合支护方式。高强度锚杆抑制巷帮的破坏趋势,缩小拉剪破坏区面积,锚索联结巷道浅部破碎岩体与岩层深处稳定岩体,增强了小结构稳定性,东1100综放工作面运输顺槽围岩控制效果良好。