论文部分内容阅读
纳米晶涂层兼具优异的抗高温氧化和抗剥落性能,且可避免传统金属涂层必然遇到的涂层-合金元素互扩散问题,为高温防护涂层的发展开辟了新的方向。然而,纳米晶涂层在高温下极易发生晶粒粗化失去其结构优势,为涂层的长期服役埋下隐患。针对此问题,本论文在研究纳米晶涂层热稳定性和高温氧化行为的基础上,制备了掺杂少量氧的纳米晶涂层,研究了氧元素界面偏聚和第二相颗粒钉扎对纳米晶涂层热稳定性的影响。之后,研究了氧掺杂纳米晶涂层在1000℃的高温氧化行为,评估了其抗氧化性和抗剥落性能,揭示了纳米晶涂层的抗高温氧化微观机理及其与涂层热稳定性之间的内在联系。最后评估了涂层在700℃、NaCl和水蒸汽环境中的耐蚀性,并揭示了其耐腐蚀机理。本论文建立了抗氧化、耐腐蚀、无扩散型纳米晶涂层研究的理论体系,为纳米晶涂层高温应用和“两机”热端部件防护涂层的实际设计提供理论参考。为探讨普通纳米晶涂层热稳定性和高温氧化行为的内在联系,利用磁控溅射技术制备了 Al含量为3.6 wt%的纳米晶涂层,并进行了 1000℃恒温氧化实验。结果表明:纳米晶涂层在氧化初期可形成保护性表面氧化铝膜,但氧化100小时后,涂层抗氧化性降低。这是因为TiO2在Al2O3中的生长诱导了裂纹的萌生和扩展,最终导致氧化膜局部剥落。而涂层晶粒已长至微米等级,剥落区下方涂层中Al含量较少无法再生Al2O3膜,被保护性较弱的氧化物,如TiO2、NiCr2O4、NiTiO3等取代,氧化速率出现短时增大。上述研究中表明晶粒粗化会影响氧化铝膜的再修复,因此需设计一种热稳定纳米晶涂层。氧在镍基高温合金中溶解度较低,易发生晶界偏聚和第二相析出,可能有助于抑制晶粒长大。因此在磁控溅射过程中引入适当的氧气,制备了四种氧掺杂纳米晶涂层,其氧含量分别为0 at%、2 at%、8 at%和14 at%,论文中分别表示为O-0、O-2、O-8和O-14。并研究了含氧涂层在800-1100℃真空退火实验中的微观结构演变。结果表明:含氧涂层在退火温度达到1100℃时也表现出较好的热稳定性,且热稳定性随氧含量的增加而增强。含氧涂层表现出的优异的热稳定性归因于热力学和动力学机制的相互作用。退火时沉积态涂层中溶解的氧重新分布,一部分偏析于晶界降低了晶界能,一部分与合金元素反应生成第二相抑制晶界迁移。之后对热稳定涂层进行了 1000℃恒温氧化和循环氧化实验。结果表明:不同含氧量涂层在高温氧化过程中表现出不同的氧化行为。O-14涂层从氧化初期就发生了失稳氧化。O-2和O-8涂层表现出比O-0涂层更好的抗氧化性,尤其是O-8涂层表现最好。这是因为O-2和O-8涂层较好的热稳定性使得维持Al2O3膜生长所需的临界Al含量低于O-0涂层50%以上。O-8涂层和O-8/O-0双层涂层表现出较好的抗剥落性,其中O-8/O-0双层涂层抗表面起伏能力更优。O-8涂层在氧化过程中内部产生的纳米级氧化物颗粒降低了涂层和氧化膜之间的热膨胀系数差异,进而减少了循环氧化过程中O-8涂层内部的热应力。而O-8/O-0双层涂层中,上层O-8涂层降低了涂层内的热应力,下层O-0涂层具备比O-8涂层更好的抗表面起伏能力,因此该涂层表现出优异的抗剥落性。最后对热稳定涂层进行了 700℃、NaCl和水蒸汽环境中的腐蚀行为研究。结果表明:K38G合金表现出相对涂层较弱的耐腐蚀性,其腐蚀产物由疏松的NiO外层和致密的NiCr2O4层组成。疏松的氧化膜不能有效阻碍腐蚀介质的入侵。同时腐蚀过程中产生的气态腐蚀产物使氧化膜和合金界面结合不紧密,氧化膜容易剥落。O-0和O-8涂层表面氧化膜主要由Cr2O3组成。且两种涂层在该温度下都保持结构稳定,涂层内具备较大的晶界密度,会提高腐蚀介质向内扩散速率,因此O-0涂层发生了严重的内腐蚀。但O-8涂层中掺杂的O在腐蚀过程中与涂层中的Al反应生成大量的纳米级Al2O3颗粒,这些颗粒沿柱状晶晶界分布,有效降低了腐蚀介质沿晶界向内的扩散,涂层内几乎未发生内腐蚀,显著提高了抗腐蚀性。