论文部分内容阅读
除草剂大量使用造成的环境污染问题日益受到人们的关注,解决污染的手段与方法不断地被提出和更新,其中利用微生物降解除草剂已成为近年来的研究热点。芳氧苯氧丙酸类和氯乙酰胺类除草剂是我国除草甘膦以外,使用最多的两大类除草剂,并且这两类除草剂的品种多,使用量大;在解决了农田杂草危害的同时,也给环境带来了巨大的污染。本研究以精嗯唑禾草灵和乙草胺为底物,对芳氧苯氧丙酸类和氯乙酰胺类除草剂降解微生物进行了分离鉴定,以期为这两大类除草剂污染的生物修复及其抗除草剂转基因作物的研究提供理论基础和微生物资源。一、精噁唑禾草灵降解菌的分离鉴定及降解特性研究从长期受农药污染的土壤中分离出能够快速降解精嗯唑禾草灵的菌株T1,根据表型特征、生理生化特性及16S rDNA系统发育分析,将其初步鉴定为红球菌属(Rhodococcus sp.)。菌株T1最适生长温度和pH分别25℃和7.0,好氧性生长,当NaCl浓度小于3%时,菌体生长良好。经HPLC/MS鉴定菌株T1代谢精嗯唑禾草灵的产物为精噁唑禾草灵酸,即该菌株降解精噁唑禾草灵是依靠断裂其酯键来实现的,但是它不能进一步降解精嗯唑禾草灵酸。菌株T1可以精嗯唑禾草灵降解过程中产生的乙醇进行生长,其降解精噁唑禾草灵的最适温度和pH分别为30℃和8.0。在该条件下,5%接种量的菌株T1在24h内可将100mg·L-1的精噁唑禾草灵降解94%以上,且该菌株还能降解包括精喹禾灵、氰氟草酯、炔草酯、高效氟吡甲禾灵等在内的多种芳氧苯氧丙酸类除草剂,降解谱很广。二、精嗯唑禾草灵水解基因feh的克隆表达及酶学性质研究以三丁酸甘油酯为底物,利用鸟枪法从Rhobococcus sp. T1基因组文库中筛选到了两个含有酯酶基因的阳性克隆;其中阳性克隆pTT2具有精噁唑禾草灵水解活性。利用重叠延伸PCR技术从阳性克隆pTT2中成功扩增出了精噁唑禾草灵水解酶基因feh,并成功构建了该基因的表达载体pET29a-feh; feh可以在E.coli BL21(DE3)中很好地表达,重组酶Feh经Ni-NTA柱纯化后获得纯酶。精嗯唑禾草灵水解酶Feh的最适反应温度为50℃,最适反应pH值为9.5,具有较好的pH稳定性和热稳定性。Feh可以水解对硝基苯酯类和三酰甘油酯类物质,但水解能力受碳链长度影响。Feh以精噁唑禾草灵为底物时的Km和Vmax分别为0.37mmol·L-1和1.08mmol-min-1·mg-1.三、乙草胺降解菌的分离鉴定利用以乙草胺为唯一碳源的无机盐培养基,从乙草胺农药厂的活性污泥中获得了能够将乙草胺完全降解的富集液T3和T4,二者均能在6d内将100mg·L-1的乙草胺完全降解。富集液T3和T4均能降解丁草胺,并使敌稗部分降解产生新的产物,但二者均不能降解吡草胺和丙草胺。利用RFLP和平板培养发现富集液T3和T4中具有丰富的细菌多样性。从富集液T3和T4中逐步分离到了能够将乙草胺完全降解的菌株T3-1、T3-6、T4-7和MEA3-1;它们联合降解乙草胺的途径为:菌株T3-1将乙草胺降解为2’-甲基-6’-乙基-2-氯乙酰苯胺(CMEPA),菌株T3-6和菌株T4-7再将CMEPA降解为2,6-甲乙基苯胺(MEA),而菌株MEA3-1则可将MEA完全降解。利用生理生化特性和16S rDNA序列分析将菌株T3-1、T3-6和MEA3-1分别鉴定为Rhodococcus sp.、Delftia sp和Sphingobium sp.。四、乙草胺降解菌的降解特性研究及其对乙草胺的联合降解菌株T3-1可以乙草胺降解产物为碳源生长,其降解乙草胺的最适温度和pH分别为37℃和7.0。在该条件下,5%接种量的T3-1在14h对200mg·L-1乙草胺的降解率为95.5%。菌株T3-1还可以降解丁草胺,但不能降解丙草胺、异丙草胺和吡草胺。菌株T3-6不能以CMEPA降解产物MEA或氯乙酸为唯一碳源生长,其降解CMEAP的最适温度和pH分别为30℃和7.0;在该条件下,5%接种量的T3-6在10h内即可将500mg·L-1的CMEPA完全转化为MEA和氯乙酸。菌株T3-6还可以降解苯胺和邻苯二酚,并使对苯二酚发生部分转化。菌株MEA3-1可以MEA为唯一碳源进行生长,使MEA完全矿化,其降解MEA的最适温度和pH分别为30℃和7.0。在该条件下,5%接种量的MEA3-1在10h内即可将50mg·L-1的MEA降解完。菌株MEA3-1不能降解苯胺,并且只能使邻苯二酚和对苯二酚发生部分转化。在30℃和pH7.0条件下,菌株T3-1、T3-6和MEA3-1的共同作用可以在24h内将200mg·L-1的乙草胺完全矿化80%以上,其降解效果远远高于已报道的菌株。因此,由这三个菌株制成复合培养物,对乙草胺和丁草胺污染的生物修复有很大的应用价值。