论文部分内容阅读
随着气候变暖和能源问题的日益严重,全球范围内掀起了新能源汽车开发热潮。永磁同步电机效率高、调速性能好等一系列优点受到广泛关注。作为新能源汽车的动力核心部件,其好坏直接决定整车性能。本文在辽宁省科技攻关计划项目—永磁交流牵引电动机的共性关键技术及产品研发的支持下,通过理论分析和实验对车用高效、高功率密度永磁同步牵引电机空载铁耗、负载杂散损耗、热管理以及电机设计计算等关键技术问题展开深入分析研究。首先,对正弦波电压供电和变频器供电下的车用永磁同步电机磁场特性进行了详细分析。在此基础上,采用有限元方法对永磁同步电机在正弦波电压供电和变频器供电下的空载铁耗进行了分析计算和实验测试。给出了采用有限元方法计算的铁耗修正系数。通过实验测试得到了变频器供电后空载铁耗增加率与供电电压调制比的关系。在计算和实验的基础上,提出了一种综合考虑气隙磁密谐波幅值、电机极槽配合的电机空载铁耗最小化的气隙磁密优化判据ironloss_index。运用该优化判据,对不同极槽配合的极弧因数和转子外圆进行了详细分析,给出了不同极槽配合下的最优极弧因数和8极48槽结构转子外圆最优辅助槽位置。其次,针对负载杂散损耗分布复杂,难于准确计算的问题,从定子、转子和永磁体三方面对车用永磁同步电机的负载杂散损耗进行了理论分析和有限元求解,并通过实验给出了计算结果的修正系数。从定子磁动势着手,给出了定子负载杂散损耗和转子涡流损耗解析表达式。重点分析了定子磁动势各次时间谐波和空间谐波对转子损耗的影响。直接从麦克斯韦方程出发推导了永磁体涡流损耗解析计算表达式,为永磁体涡流损耗的抑制提供了依据。通过负载杂散损耗的实验测试,给出了有限元计算的修正系数和负载杂散损耗与电机输入功率的比例关系以及时间谐波电流所产生的杂散损耗随负载的变化关系。采用推导的永磁体涡流损耗解析表达式结合有限元方法对分段法抑制永磁体涡流损耗进行了详细分析,给出了普遍适用的分段规律。设计了一种永磁体涡流损耗测试装置,对不同尺寸的永磁体测试结果验证了所得结论的正确性。再次,在损耗计算基础上,采用流体场和温度场相结合的方式对车用永磁同步电机冷却系统和热管理进行详细分析。根据车用电机的安装和尺寸特点,确定了周向螺旋结构最适合车用永磁同步电机。运用流体场软件分析得到了水道散热系数与水流速度的关系。同时采用流体场对机内空气流动特性进行了详细分析,得到了空气流速分布。在此基础上,对20kW样机进行了稳态和瞬态温度场分析计算,给出了一种实时修正电机损耗的瞬态温度场计算流程图和损耗修正公式。测试结果验证了温度场计算结果的正确性。给出了允许短时过载时间随热负荷的变化关系。最后,结合车用永磁同步电机的控制方法对永磁同步电机的电磁设计计算方法以及参数配合对高效区范围、弱磁性能的影响进行了详细分析。对车用永磁同步电机的转子结构形式、极槽配合和空载反电动势的选择进行了研究,最终设计制造了转子结构为“V一”型和“V”型,额定功率20kW,4500r/min,峰值功率40kW,功率密度大于1.5kW/kg,高效区比例>80%的两台车用永磁同步电机样机,并进行了全面的实验测试。测试结果与计算结果误差较小,验证了分析和计算方法的正确性。