论文部分内容阅读
本文原创设计一类适于拼装固定型重载铁路辙叉用的全新低碳高硅MnSiCrMoNi系马氏体钢,以这类钢为研究对象,并与传统00Ni18Co9Mo4Ti马氏体时效钢做对比研究。首先优化了新型低碳高硅马氏体钢的热处理工艺,然后,利用金相、XRD、SEM、TEM,以及拉伸、冲击、摩擦磨损和应变疲劳等研究方法和手段,对两类钢的宏微观组织、相组成,常规力学性能、断裂韧性和疲劳性能以及磨损性能进行了系统研究。得出如下主要结论:22MnSi2CrMoNi钢经900°C奥氏体化水淬后320°C回火处理获得最优强韧配合,其强塑性与00Ni18Co9Mo4Ti马氏体时效钢相当,冲击韧性比马氏体时效钢高14.3%,综合力学性能达到马氏体时效钢水平,适合于制造固定型拼装重载铁路辙叉。钢中存在的高密度位错及弥散分布的细小?-碳化物保证了超高强度,同时,?-碳化物的析出降低了马氏体中的C含量,调整晶格畸变,保证了高韧性。22MnSi2CrMoNi钢具有与马氏体时效钢相当的疲劳性能,但其耐磨性略低于马氏体时效钢。这类低碳高硅马氏体钢具有优异疲劳性能的原因是,其具有高的屈服强度及较好的塑性、韧性,能够表现更大的塑性变形,抑制了疲劳裂纹的形成及扩展;另外,薄膜状残余奥氏体应变诱发马氏体相变钝化裂纹尖端,进一步抑制了疲劳裂纹扩展。两种钢耐磨性的差异主要取决于其磨损机理,22MnSi2CrMoNi钢以磨粒磨损为主,表面吸附氧化物少,不利于润滑,同时摩擦升温相当于对其进行回火,降低表层硬度进而加速磨损;而马氏体时效钢以粘着磨损为主,表面吸附的大量氧化物相当于固体润滑剂,同时起到隔热作用,降低表层温度,进而削弱磨损。18Mn3Si2CrMo和18Mn3Si2CrMoNi两种低碳高硅马氏体钢的相变动力学,微观组织及力学性能随等温温度的变化规律相同。这两种钢在冷却过程中均先生成部分马氏体,在随后等温过程中发生贝氏体相变,形成由低碳马氏体、低温贝氏体及高碳残余奥氏体多相组成的混合组织。在较低等温温度下,先生成的尺寸细小的马氏体在等温过程中得到充分回火,配合一定量高强韧贝氏体及高韧性的残余奥氏体使得材料获得最优强韧性。随着等温温度升高,贝氏体及马氏体板条明显粗化,不稳定块状残余奥氏体大幅度增加,降低了材料的冲击韧性。等温相变温度为315°C时,大幅度增加的不稳定大块状残余奥氏体过早的向马氏体的转变降低了材料的过渡疲劳寿命。试验钢的总疲劳寿命受各相协调作用的影响,使得不同总应变幅下的疲劳寿命存在差异;对材料的总疲劳寿命起主要作用的是高强韧性的低碳马氏体组织含量及残余奥氏体的形态,起次要作用的高强韧贝氏体组织含量及总残余奥氏体含量。