论文部分内容阅读
卫星和其它飞行在近地轨道(低于3.8倍地球半径的轨道)的航天器对被地球磁场俘获的高通量质子流极其敏感,双极型集成电路则更容易因此而产生辐射损伤。在双极型集成电路中,这些粒子产生的损伤会同时引起体复合(主要由位移损伤引起)与表面复合(主要由电离损伤引起),而这将导致电流增益的退化。器件辐射效应的大小与入射粒子的能量、种类和强度都有密切的关系。但国内外对于线性模拟电路位移损伤研究较少,研究中存在辐射效应研究不完善、损伤机理研究不深入、得到的研究结论不系统等问题,且所开展的研究使用辐射源较为单一,无法比较不同辐射源对器件产生损伤的差异,因此,深入地了解运算放大器和电压比较器这些基本线性电路的各种辐射条件下性能的变化规律和损伤特性,对系统的评价双极器件的抗辐照水平,特别是研究各种粒子对双极运放和电压比较器的辐射损伤等效性及其微观机制,具有非常重要的意义。 近年来国内外对双极器件进行了较多研究,但其使用的实验室模拟辐射源大多为电离辐射源(例如X射线和60Coγ射线)。而对质子、电子、和中子的辐射损伤特性的研究则很少。由于空间环境中造成辐射损伤的粒子主要为质子和电子,质子与电子产生的辐射损伤与γ射线产生的损伤有何不同,如何建立二者之间的等效关系等都很值得研究。分析质子和电子对双极线性电路造成的辐射效应,对器件的评估和抗辐照加固有非常重要的意义。 本文研究了不同种类的双极运算放大器和电压比较器在60Coγ辐照源、不同能量的电子辐照源、质子辐照源以及中子辐照源下的电离辐射效应,发现辐射源不同,产生的辐射损伤也不同。对于PNP输入双极运算放大器LM837,损伤程度与入射质子的能量有关,相同等效总剂量的条件下,10MeV质子辐射造成的损伤大于3MeV质子,3MeV、10MeV质子辐射产生的损伤高于60Coγ射线辐照造成的损伤。而中子辐照由于只能产生位移损伤,因此在相同注量的条件下,其产生的损伤小于等注量的质子。在电子辐射环境中,1.0~1.8MeV高能电子对双极运算放大器的辐照损伤,其主要损伤类型为电离损伤。高能电子辐照下PNP输入双极运算放大器在正偏情况下的损伤均大于零偏下的损伤。 其次,对不同偏置的NPN输入双极运算放大器在60Coγ辐照源和不同能量的电子辐照源、质子辐照源下的辐射效应进行了研究。对于NPN输入双极运算放大器,当电子能量不同时,器件的损伤随着能量的增大而增大。对于NPN输入双极运算放大器,在高能电子辐照下,器件出现了低剂量率辐射损伤增强效应,而能量不同所引起的损伤差异没有束流引起的损伤差异明显。对于NPN输入双极运算放大器,其受质子辐照后,其损伤程度与器件所处的偏置状态有关,NPN型输入级运算放大器零偏置状态下器件的损伤大于正偏置时器件的损伤。NPN输入运放的电源电流是另一个对质子辐射敏感的参数,正偏状态时电源电流对电离损伤很敏感,零偏状态时,电源电流对电离损伤并不敏感,但是对位移损伤却很敏感。 最后,对双极电压比较器在60Coγ射线、质子辐照源和中子辐照源下的辐射损伤效应进行了研究。3MeV质子辐照的实际吸收剂量所造成的器件输入偏置电流的退化小于能量为10MeV的质子在等效总剂量下辐照的损伤,二者同时小于相同等效剂量的60Coγ源辐照所造成的损伤。在3MeV、10MeV质子和60Coγ源辐照下,电源电流损伤大小也不同,3MeV质子辐照的正偏置状态导致的损伤最小,而60Coγ源辐照下的损伤表现出了最大的损伤效应。在相同偏置下,60Coγ源辐照所引起的电源电流的退化大于3MeV和10MeV质子辐照所引起的损伤。研究结果不但为设计抗辐射加固器件提供了依据,而且为进一步深入研究双极器件的低剂量率辐射损伤增强效应提供了强有力工具。 综上所述,本文对空间电子系统经常用到的双极运算放大器和电压比较器进行了多种条件的辐射效应研究,获得了运算放大器和电压比较器在不同辐射环境中较为全面的辐射损伤特性,并采用科学的实验手段和合理的数据分析方法,探讨了各参数变化的原因;分析了不同偏置下损伤特性存在差异的原因。研究结果不但为深入研究双极器件的空间辐射环境损伤特性提供了数据支持,而且为线性电路抗辐射加固设计提供了有力依据。