论文部分内容阅读
电磁场看不见又摸不着,但却无处不在地存在于我们的生活中。无论是在军事还是民用领域,人们所处的电磁环境都在变得越来越复杂,人们想要了解的电磁问题也变得越来越精细、越来越庞大。在诸多电磁数值算法中,表面积分方程法由于其理论精度高、离散单元少的优点,一直以来被计算电磁学领域的学者们广泛关注。面对日益增长的电磁仿真需求,即使是积分方程法的快速算法,也很难在有限的计算资源内求解现实电磁环境中的超电大问题、系统级问题,例如机载大型天线阵列的系统级电磁仿真问题、舰船的隐身特性分析类的超电大问题等等。为了在保证精度的前提下,利用现有的有限计算资源,在可接受的时间范围内解决大型复杂的电磁仿真问题,本文研究了基于面积分方程的区域分解算法,并结合并行计算策略和核外求解策略,在工作站上高效精确地解决了低雷达散射截面目标散射特性分析、舰船隐身特性分析和机载大型天线阵列螺旋桨调制效应受扰分析的电磁仿真难题。本文的主要研究工作可概括为:1.深入研究了采用矩量法计算PEC和介质物体表面的电磁场(积分奇异性)或者近表面处电磁场(数值积分奇异性)时,积分核中存在的奇异点。首先探讨了利用Green函数法求场时,积分奇异性产生的原因;然后根据奇异值展开法,推导了表面电磁场积分计算的解析表达式;最后将该解析表达式推广到近电磁场积分的计算中。这为本文后面提出的三种积分方程区域分解算法,采用互耦电磁场代替互耦阻抗的方式来综合子区域间的互作用影响,提供了精确计算的实现基础。2.详细研究了针对多尺度PEC目标的、非重叠非共形的区域分解算法。该算法可以根据模型的电尺寸结构特点对各个子区域进行独立地网格剖分;子区域内部采用基于LU分解的直接求解器,保证了子区域内部解的准确性;子区域外部(整个区域分解系统)采用定常迭代求解器,使得只通过简单几步迭代就能快速得到整个系统问题的解,加快了求解速度。在计算子区域间的互耦作用时,通过对各个子区域的原始平面波激励源叠加其他子区域的互耦电磁场激励源的方式,隐式地实现了Robin型传输条件所约束的切向场和法向场的连续性;其中,在人工虚拟交界面上采用自区域的表面电流来计算互耦激励场,在其他非交界面上采用其他区域的表面电流来计算互耦激励场。其优势是不必添加额外的约束条件,从而简化了系统矩阵的填充,优化了程序实现的复杂性,减少内存消耗和计算复杂度。3.深入研究了针对大尺度PEC和介质目标的、基于矩阵分块的区域分解算法。相对于非重叠非共形的区域分解算法而言,该算法的网格划分策略更加简便,免去了繁琐的人工模型预处理过程,采用现有的网格划分算法(如METIS软件包等)就可以进行自适应区域划分;子区域内部采用基于LU分解的直接求解器,保证了子区域内部解的准确性;子区域外部(整个区域分解系统)采用基于Krylov子空间的迭代求解器和左手预条件策略保证整个系统问题的稳定、快速收敛,所使用的外部非定常迭代求解器对于各种电磁模型的求解具有较高的普适性。在计算子区域间的互耦作用时,提出了子区域分界线处的互作用积分项处理策略,即子区域间采用1/4阻抗元素参与互耦计算以提高求解精度。其优势是可以在保障算法的计算精度的前提下,简化建模复杂度,减少程序内存消耗,提高程序求解效率。4.详细研究了针对含有可变部件物体的、基于高阶基的区域分解算法。该算法可以将电大物体模型大体上按结构可变和结构不可变来进行区域划分,将可变部件划分为独立的子区域;子区域内部采用基于LU分解的直接求解器,并将分解后的子矩阵进行核外存储,在之后的外迭代过程中被反复使用以加快整个区域分解系统矩阵方程的求解速度;子区域外部(整个区域分解系统)采用定常迭代求解器,使得只通过简单几步迭代就能快速得到整个系统问题的解。其优势是对于含有可变部件的复杂目标而言,只需要对可变部件对应的子区域(通常较小)在设计过程中反复进行子矩阵填充和分解,而对于不变部件所对应的子区域(通常为较大的主体部件),可以只进行一次子矩阵的填充和分解,并在外迭代中被反复利用即可;在外迭代过程中将可变部件对应的子区域与其他不变的子区域进行耦合,可以显著减少计算时间,加快设计周期。5.对于本文所提出的三种区域分解算法,有针对性地仔细研究了每种算法对应的并行策略。对于旨在解决多尺度问题的非重叠非共形区域分解算法和旨在解决含有可变部件物体的基于高阶基的区域分解算法,由于它们都是根据所求解目标的结构特点划分区域,很难保证区域划分的均衡性,所以设计了“子区域内并行,子区域间串行”的并行策略来保证进程间的负载均衡,提高并行区域分解程序的计算效率。对于旨在解决大尺度问题的基于矩阵分块的区域分解算法,由于其区域划分策略不受限于模型的结构特点,可以实现尽可能均匀的区域划分;因此还设计了“子区域间并行,子区域内串行”的并行策略,这种并行策略更符合区域分解算法自身天然的并行状态,而且更利于并行程序的扩展。利用本文所提出的基于面积分方程的区域分解算法,使用普通工作站就可以解决电大目标的电磁仿真问题。这对于大多数普通的、具有电磁仿真需求的研究人员来说,提供了很大的便利。如果将这三种区域分解程序移植到高性能计算平台上,那么可求解的电磁问题的规模还能翻倍。