氧化锆种子层对氧化铪基薄膜相稳定性影响的第一性原理研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:xifeng125
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着5G、人工智能、物联网的兴起,信息量的增长激发了人们对高性能存储器的需求。铁电存储器由于其高存储密度、高读写速度、低功耗、抗辐射、非挥发性等优势得到了人们广泛的关注和应用。但是传统的铁电材料由于自身的弊端限制了存储器进一步的发展,所以研发一种新型的铁电材料势在必行。自2011年,首次发现掺杂的氧化铪薄膜具有铁电性能之后,该类材料就迅速得到了广泛的关注。目前,人们认为氧化铪的铁电性来源于其中的正交铁电相(Pca21),但是该相在常温常压下为亚稳相而不能稳定存在。然而,人们对于如何稳定该类正交铁电相,并实现对氧化铪薄膜的铁电性调控,还没有形成统一的认识。近年来,人们发现衬底与氧化铪薄膜之间的界面对其铁电性能有着显著影响。薄膜和衬底之间的种子层,如氧化锆籽晶层,被证明是实现界面调控的有效途径。然而,由衬底或种子层对氧化铪基薄膜铁电性能的界面调控微观机制仍不清楚。因此,本文通过第一性原理计算的方法,系统地研究了氧化锆种子层对氧化铪薄膜的相稳定性和极化性能的影响和调控机理。得到了以下几点结论:(1)通过第一性原理的计算方法,计算了氧化铪薄膜各相在<001>和<111>两类取向下的相稳定性。我们发现,在<001>取向下,表面分别为铪终端、氧终端及铪氧终端的氧化铪薄膜的铁电相与单斜相之间的能量差分别为:0.50 e V、0.20e V以及0.15-0.20 e V。这表明氧终端和铪氧终端表面结构对于铁电相的稳定是有利的。四个不同的<111>取向铁电相薄膜,具有相同的相稳定性,与单斜相之间的能量差为0.63-0.67 e V,这意味着,仅通过尺寸效应的影响,很难使沿<111>取向的氧化铪铁电相成为稳定相,需要采用其它的调控方法来促进其稳定性。(2)研究了氧化锆种子层对氧化铪相稳定性和择优取向的影响机理。结果表明引入[001]取向氧化锆种子层对氧化铪薄膜铁电相的稳定性没有明显的作用。而[100]取向氧化锆种子层的引入有利于氧化铪铁电相的稳定,同时随着氧化铪厚度的减小,铁电相越来越稳定。而在[111]取向氧化锆种子层调控作用下,铁电相与单斜相之间的能量差为仅0.03-0.05 e V,而且铁电相在不同厚度下都保持较好的稳定性。我们还通过波恩有效电荷和NEB方法分别计算了<111>取向氧化铪铁电相的极化值和翻转势垒。结果表明,其铁电极化强度与实验符合较好,同时其极化翻转势垒得到了有效地降低,即可以通过引入种子层减小氧化铪基铁电薄膜的矫顽场。
其他文献
近年来,锂离子二次电池在能源储存领域取得了巨大的成功,推动了人类社会的发展。然而,面对锂离子电池关键材料的资源、环境、回收、价格等问题的挑战,发展下一代综合性能优异的电池关键材料非常关键。有机电极材料由于其原料来源渠道广泛、结构灵活且可设计性强、相对较低的成本和环境友好等特点,在电化学能源储能领域受到广泛关注。然而有机分子固有的低电子电导率和高溶解性,极大地限制有机电池的发展。卟啉有机材料由于其具
近几年来,以供电子稠环单元为中心核的吸电子基团-供电子基团-吸电子基团(A-D-A)型非富勒烯小分子受体(NF-SMAs)受到了越来越多的关注。这类NF-SMAs材料由供电子稠环中心核、侧链和吸电子端基构成,供电子稠环中心核的大平面的刚性结构能有效提高分子间-堆积作用,从而改善电荷传输效率,而且,稠环中心核具有较强的供电子能力,可以和吸电子端基进行分子内电荷转移作用,从而达到拓宽材料吸收光谱的效果
生物镁合金具有低密度、适中的力学性能和良好的生物相容性,作为新一代可降解生物医用材料,应用前景广阔,但其过快的降解速率极大地限制了其临床应用。因此,深入研究生物镁合金的腐蚀机理及其影响因素,建立其降解失效的预测模型与方法,可为生物镁合金耐腐蚀性能的改善以及服役过程可靠性的提高提供理论依据。相场方法是模拟材料在各种环境下微观结构演化的一种强有力的工具,本论文以WE43商业镁合金为研究对象,采用相场方
裂纹问题是窒碍激光熔覆进一步推广应用的关键。因而制备无裂纹的覆层一直是表面工程和材料科学领域共同关注的热点。本文针对覆层裂纹这一难点和关键问题,提出声-电-磁多物理场辅助激光熔覆制备涂层新工艺。采用理论分析与实验研究相结合的方法,探究了单物理场与多物理场对熔池凝固过程、覆层开裂倾向、宏微观组织形貌以及熔覆涂层显微硬度、摩擦学性能和抗腐蚀性能的影响规律。主要内容与结论如下:首先,综述了激光熔覆裂纹的
随着全球疫苗需求的日益增长,特别是近两年新型冠状肺炎病毒的大爆发而引发的新冠疫苗需求暴涨,国内外对于一次性预灌封疫苗注射器的需求呈现急剧增长态势。预灌封注射器自动组装机构是将预灌封注射器进行组合装配的高速自动化设备。该设备的关键执行机构是套管装配机构。合理的套管装配机构结构设计及其运动精度可靠性决定了预灌封注射器装配成品品质。本文以套管装配机构为研究对象,对其进行结构设计,开展多因素影响下的机构运
滚动轴承作为旋转类机械设备中的关键零部件,有着精度高、负载大、结构紧凑和质量稳定可靠等优点,在交通运输、电力、航空等领域中应用甚广。但是滚动轴承在实际运行条件下容易发生各种各样的故障。因此研究其故障检测和诊断方法对于降低维护成本、提高工作效率和预防系统故障的作用是不言而喻的。滚动轴承诊断过程中的关键在于如何有效地从其信号数据中完成特征获取、特征融合和智能识别分类等一系列操作。本文为了提高滚动轴承状
微机电系统(Micro Electro-Mechanical Systems,MEMS)是一种尺寸达到微米甚至纳米量级的装置,在航空航天、通讯技术、生物医学以及国防军事等领域都得到广泛应用。但是微机电系统的零部件在运动过程中由于尺寸效应和表面效应会出现严重的摩擦磨损,并且主要材料单晶硅及其化合物的摩擦学性能较差,这严重制约了微机电系统的发展与应用。因此,对单晶硅进行减摩耐磨处理刻不容缓,自组装分子
镍基高温合金被广泛应用于发动机热端部件,添加Re、W等难熔元素会导致合金中析出拓扑密堆相(TCP),加速裂纹的形成与扩展,降低合金的持久性能。元素Nb能提高镍基高温合金的强度、硬度及塑韧性,但Nb过量时,强度增加减缓但塑韧性急剧下降。本论文围绕含Re镍基高温合金微观组织及Al-Re-Nb三元系相关系展开了研究。通过研究Re、W元素交互作用及固溶-时效处理对镍基高温合金组织的影响,揭示了TCP相的形
随着能源危机与环境污染等问题日益加剧,对新能源的开发利用与储存愈发受到关注。相变储能是热能储存中的一种有效方式,具有储能密度高,工作温度稳定等优点,但所使用的相变材料导热性能差,且在固液相变过程中存在泄漏等问题,制约了其在能源储存领域的推广和应用。针对以上问题,本文借助实验和分子动力学模拟对纳米碳材料/石蜡定型复合定型相变材料进行研究,对其相变特性与微观导热性能进行探讨。主要研究内容和结论如下:1
铁电材料因其优异的介电、压电、铁电,以及热释电性能,而广泛应用于驱动器、换能器、传感器、探测器等微电子器件元件。随着微电子器件的集成化、微型化和多功能化,铁电薄膜材料的制备及其性能分析备受关注。(1-x)Pb(Mg1/3Nb2/3)O3-x PbTiO3(PMN-PT)具高机电耦合系数、巨电致伸缩效应,特别是在准同型相界附近具有极高的介电、压电等电学性能。PMN-PT薄膜材料相比于块体材料,可以通