【摘 要】
:
如今,我国互联网行业发展迅猛,在此背景下,电子商务逐渐崛起,2021年天猫商城在“双十一”大型促销活动中已经采用“两波”预售模式,交易额突破5000亿元大关。预售使电商企业在电子商务背景下获得更高利润,但是存在信息不对称,市场需求不确定,定价决策不清晰等问题,这对电子商务的稳定发展产生了很大的阻碍。目前,如何把握市场需求,合理定价、吸引更多消费者购买产品成为当前电子商务预售模式研究的热点。因此,本
论文部分内容阅读
如今,我国互联网行业发展迅猛,在此背景下,电子商务逐渐崛起,2021年天猫商城在“双十一”大型促销活动中已经采用“两波”预售模式,交易额突破5000亿元大关。预售使电商企业在电子商务背景下获得更高利润,但是存在信息不对称,市场需求不确定,定价决策不清晰等问题,这对电子商务的稳定发展产生了很大的阻碍。目前,如何把握市场需求,合理定价、吸引更多消费者购买产品成为当前电子商务预售模式研究的热点。因此,本文主要针对预售模式和销售模式相结合的产品定价问题建立数学模型,并提出了基于信息扩散的从众人工蜂群算法来求解该模型,为电商企业在两阶段产品定价提供一定理论支持。本文主要内容如下:首先,深入研究产品定价以及产品扩散和口碑的相关理论,并阐述了本文研究中参考的报童模型、扩散模型以及人工蜂群算法,为企业销售产品制定合理价格提供基础理论支撑。然后,针对现有消费者信息感知滞后、市场需求不确定等问题,建立扩散效应下的产品定价模型和双口碑扩散效应下的产品定价模型,并对双口碑扩散效应下的产品定价模型进行仿真,分析口碑和扩散对电商企业定价决策的影响。最后,在智能算法求解定价问题中,存在现有定价模型采用算法较为陈旧,导致实验结果与当前市场匹配度较低的问题。针对现有问题以及人工蜂群算法存在的不足,提出一种基于信息扩散的从众人工蜂群算法,通过22个基准测试函数说明改进算法的精度、鲁棒性。同时,利用改进算法进一步求解上述产品定价模型,结果表明改进算法求解出的定价可以使电商企业获得更高利润。通过以上研究可以得出结论,本文所提算法及模型能有效优化电商企业的产品定价问题,能够加强消费者信息感知度、为企业合理制定价格,更好吸引消费者购买产品。同时,改进算法和产品定价模型结合效果良好,并且改进的算法求解出的最优价格更符合定价问题现实背景,这不仅能够让企业发展的更好更稳定,还能让企业在行业角逐之中具有更大的优势。
其他文献
智能机器人如扫地机器人、自动分拣机器人和配送机器人目前在家居和工业生产等领域代替人从事大量简单重复的工作,极大地提高了生产力,并在可预见的未来将进入更多的应用场景帮助我们进行生产生活活动。当前限制机器人应用的一个巨大挑战就是如何在更复杂的条件下如自然、城市和工厂等环境中进行稳定地运动。本文研究了如何在视觉信息的辅助下进行规划和控制四足机器人的运动,这使得四足机器人能够通过选择合适的触地点和身体姿态
当前电子商务飞速地发展,在线交易规模逐步扩大,尤其是在疫情的冲击下,实体店铺的发展遇到更大阻力,但是与此同时,却给了电商巨大的发展空间。但是在其发展的过程中,也不断地暴露着诸多问题:第一是信息篡改的问题,用户信息全部由第三方平台保存,用户对交易参与方信任评价的信息存在被篡改的风险;第二是信息泄露问题,尽管用户可以进行匿名评价,但这种基于第三方的平台只能实现面向公众的信息隐藏,而非真正的匿名;第三是
多视图立体视觉(Multi-view Stereo,MVS)是从一组已知相机参数的图像中,以立体匹配为主要线索来恢复场景的密集三维表示,从而构建三维场景,而多视图深度估计是多视图立体视觉中的核心。MVS作为计算机视觉的基本问题已经研究了几十年,广泛应用于测绘、影视、自动驾驶等方面。近年来深度学习在多视图三维重建中取得良好效果,成为视觉三维重建领域的研究热点。基于深度学习的多视图立体视觉方法与传统方
本文以偃师东山白云岩矿山智慧化生产为背景研究砂石生产过程中的粒度检测问题。砂石粒度是砂石产品质量的重要信息,不同粒径的砂石具有不同的用途,粒度一致性强的骨料具有更好的品质和更高的经济价值,因此对砂石粒度进行在线检测是实现砂石品控的前提。传统的粒度检测采用人工筛分,存在人为误差大控制精度低等问题,不满足实时性要求。本文设计实现了基于端到端的砂石粒度检测系统,通过工业相机采集传送带上的砂石图像,自动检
降水预报是天气预报的核心业务,其预报准确性对于农业、交通等领域具有深远影响。目前降水预报估计主要依赖于雷达观测的云团回波情况,因此降水预报的核心步骤为雷达回波外推,即基于过去一段时间的雷达回波数据预报未来云团的运动及密度。但是,云团运动涉及复杂的大气物理规律,为外推带来极大挑战。近年来,深度学习在气象预报领域,基于循环一致神经网络(Recurrent Neural Network,RNN)的深度模
HITS算法是流行的网页排序算法,然而随着互联网中数据量不断激增,在排序结果中该算法一方面存在偏重旧网页问题,另一方面存在页面排序质量问题,因此许多学者对算法做出了改进。针对偏重旧网页问题,也就是最终查询排名靠前的常常是在互联网中存在较长时间的页面。从时间维度考虑,由于页面的发布日期格式不规范,时间参数获取困难,所以本文考虑了在周期内爬虫爬取到网页出现的次数T,将时间次数T根据牛顿冷却公式给出时间
近年来,区块链技术受到了全球学术界和工业界的广泛关注。区块链具有去中心化、匿名性、难以篡改等特点。比特币作为区块链技术应用的先驱代表,在数字货币应用、支付和货币流通等方面,发挥着重要的作用。以太坊对于智能合约的引入,使得区块链从单一虚拟币体系转变成为了合约体系,拓宽了区块链的应用范围,让区块链不再仅仅局限于支付领域,更是在医疗保健、金融、物联网等领域的应用价值得到了极大地提高。伴随着智能合约数量的
随着技术进步和消费者对大屏手机需求的增加,在手机设备有限的空间下提供更大尺寸的屏幕(即更高的屏占比)成为近年来的热点问题。一方面,水滴屏、挖孔屏等方案通过异形屏减少前置相机的空间占用,但其显示区域不完整,导致视觉效果较差,且需要系统、软件对异形屏进行显示适配;另一方面,折叠屏、弹出式前置相机、翻转式前置相机等方案通过不同的机械结构实现了完整的显示区域,然而其机械结构空间占用较大且较易损坏。因而,屏
推荐算法是互联网最热门的研究领域之一,协同过滤是推荐算法子领域之一,具有需要的数据量少,适用性强等诸多特点,广泛应用于互联网上电影、商品、广告和POI等诸多内容的推荐中。本文在考察调研了现有推荐模型的基础之上,以提升协同过滤任务召回率等指标为目的,通过分析用户-物品数据集的特性以及用户-物品关系网络中的节点的异构性,搭建了能够学习用户对物品显示反馈以及有效捕捉不同节点之间高阶关系以及协同信号的图神