论文部分内容阅读
微流控芯片(Microfluidic chip)是一种微型化、集成化的技术平台。它能把整个生物或化学过程整合到一个只有几平方厘米的芯片上,并且易于自动化操控。应用微流控技术进行实时现场生物标志物监测是作为健康评估的一个有前景的技术。γ-H2AX荧光标记技术能够检测T淋巴细胞的辐射损伤,可以为实施现场评估辐射损伤提供重要的监测靶目标。本研究为实现在芯片上自动化操控T淋巴细胞进行γ-H2AX免疫荧光标记的过程,研究了免疫磁珠结合淋巴细胞在芯片上的驱动作用、γ-H2AX免疫荧光标记芯片的设计和优化、利用人CD4细胞进行UVC紫外线辐射产生DNA的γ-H2AX荧光标记及其在芯片上实现特异性标记反应。 研究表明,利用永久磁铁带动2.8μm磁珠既满足磁铁带动CD4淋巴细胞在芯片上的拖动,又不影响辐照产生的γ-H2AX相对荧光强度与辐照剂量的线性关系。本研究优化了在芯片上实现CD4淋巴细胞γ-H2AX免疫的反应池和间隔池的数量分别为6个和5个,确立了各个反应池的反应试剂量,确立了细胞与磁珠结合比为1/10,细胞上样量为2×105。在芯片上通过永久磁铁拖动结合了磁珠的淋巴细胞实现了对CD4淋巴细胞γ-H2AX免疫特异性荧光标记。通过对不同剂量(0、16、32、64J/m2)的UVC紫外辐照后的淋巴细胞的γ-H2AX相对荧光强度分析,获得的相关系数为0.9517,证实利用该技术可以监测到辐射损伤与辐照剂量的线性关系。 本研究可以为微流控芯片自动免疫荧光染色装置以及便携式细胞生物学实验仪器的开发提供基础参数。