论文部分内容阅读
空间大气成分的信息有助于人类对全球的气候进行研究,进而更好的帮助人类的生产和生活。天基遥感的大气探测方法是一种效率较高的大气探测手段。研究高效率的天基遥感大气探测方法,在气候预测与预警、以及污染的防护和治理等领域有着重要的作用。根据实际需求,本文深入研究了一种天基大气遥感成像探测的方式,提出一种双光路共用光学元件和探测器的多光谱和高光谱大气探测方式。在分析原理和可行性的基础上,搭建了双光路多光谱成像系统的样机,检验了该大气遥感探测方式的可行性。目前国内的大气遥感载荷只具有单一的探测模式,探测范围也较小,从而给后期的解译造成困难。为提高临边覆盖范围,本文将全景成像原理用在大气临边探测上,使用全景环形透镜接收全方位的临边辐射,光束在全景环形透镜内部折返两次,实现临边360°视场的探测。通过交叉检验的方法,可以提高临边反演的精度。临边探测能够反演大气的廓线,而不能反演总量。为获得大气的总量信息,在全景环形透镜前放置前置透镜组,天底视场的光束从前置透镜进入光学系统。对于天底视场,全景环形透镜相当于一个厚透镜。天底和临边两个光路聚焦于同一像面,聚焦形状分别为一个圆斑和包围亮斑的圆环。该光学系统的天底焦距和临边焦距分别为4.86mm和5.75mm,视场分别为10°和360°×(70.32°~72.82°)。探测仪工作于400km轨道高度时,能够探测周围临边高度范围10-100km和天底覆盖范围为70km的空间大气。由于紫外到可见光谱区域有着大气及气溶胶分子的特征光谱,在该波段范围内选取了6个谱段,使用滤光片分光。在该探测仪的光学设计过程中,突破了大视场照度的提升手段和全景环形透镜的设计方法等关键技术。该探测仪的光学模型显示,设计的结果具有良好的成像质量。由于天底与全方位临边探测仪的圆环形像面限制,无法采用常规的色散方法实现高光谱探测。本文提出并设计了一种使用声光可调谐滤波器(AOTF)代替光栅或棱镜,在时间域上进行高光谱成像探测的方法。对之前多光谱探测模型进行优化改进,并增添了AOTF分光模块和中继转像模块。本文详述了该光学系统的设计和优化方法,物理仿真模型显示,AOTF双视场高光谱探测系统具有优良的成像探测效果。该大气高光谱探测方法的提出,填充了我国在相关领域的空白,同时也对我国天基高光谱探测提供了一个新的思路。为了实现天底和环形临边视场同时探测的方案的工程化,对基于滤光片分光的多光谱模型进行了敏感度分析和机械结构设计,设计了与双视场探测需求相匹配的框架式机械结构,之后完成了探测仪样机光机元件的加工和装配。由于该探测仪样机的临边环形视场口径较大,难以一次性的完成高精度定标,采取分割视场定标的方法,提高定标精度。样机的实测焦距略大于设计焦距,这保证了分辨率需求。静态传函和外场测试结果显示,样机工作性能良好,验证了设计理论。这种天底和全方位临边同时探测成像的方式,能够有效提高天基大气探测的效率,节省探测成本,为未来的大气探测提供了一个重要的参考方向。