论文部分内容阅读
聚苯并咪唑以其优良的耐热性能和机械性能在高性能高分子材料领域占有重要的地位,具有广泛的应用前景。然而,已商品化聚苯并咪唑的溶解性能和熔融较差,加工困难,限制了其在一些领域的应用。本文将扭曲、非共平面的二氮杂萘酮联苯结构引入到聚苯并咪唑的主链中,合成了一系列含二氮杂萘酮联苯结构的新型聚苯并咪唑高性能聚合物,优化合成条件;对其结构和性能进行研究,以揭示该类聚合物的结构与性能关系。本文首先从分子设计出发,以自制的4-[4-(4-羧基苯氧基)苯基]-2-(4-羧基苯基)二氮杂萘-1-酮(DHPZ-DA),为二酸单体,与3,3’-二氨基联苯胺(DAB)进行缩聚反应,制备了含二氮杂萘酮联苯结构的聚苯并咪唑均聚物,系统研究了影响聚合反应的各种因素,对聚合反应工艺进行了优化,聚合物的特性粘度达到1.63 dL/g;并以DHPZ-DA和间苯二酸(IPA)为二酸单体,采用不同摩尔配比,与DAB进行共缩聚,制备了一系列具有不同二氮杂萘酮联苯结构含量的聚苯并咪唑共聚物。聚合体系以多聚磷(PPA)为溶剂,采用高温溶液缩聚体系。利用红外光谱(FT-IR)、核磁共振氢谱(1H NMR)、广角X射线衍射(WAXD)、扫描量热分析(DSC)和热失重分析仪(TGA)等测试手段对所合成的聚合物进行结构表征和性能测试,结果表明,所合成的聚合物结构与设计相一致;大部分聚合物具有无定形结构,所合成的均聚物和大部分共聚物可溶解于N,N-二甲基乙酰胺等极性非质子溶剂中;所合成含二氮杂萘酮联苯结构的聚苯并咪唑具有优异的耐热性能,含二氮杂萘酮联苯结构聚苯并咪唑的玻璃化转变温度(Tg)由398~408℃,5%热失重均在516℃以上。由此可见,PPBI既耐高温又可溶解,综合性能优于传统聚苯并咪唑。利用二氮杂萘酮联苯结构可以赋予聚合物良好溶解性的特点,将DHPZ-DA分别与自制的3,3’,4,4’-四氨基二苯醚(TADE)、1,4-2(3,4-氨基苯氧基)苯(BAPP)和4,4’-2(3,4-氨基苯氧基)联苯(BAPBP)直接共聚,经高温溶液缩聚反应成功合成了带醚键的可溶性的聚苯并咪唑。通过对聚合物进行结构表征和性能测试,结果表明,所合成的聚合物结构与设计相一致;聚合物均为无定形结构,所合成的聚合物均可溶于N-甲基吡咯烷酮等有机非质子溶剂中;此外,聚合物T5%均高于508℃,在450℃之前无明显的热失重,说明这些聚合物的热稳定性很好。