论文部分内容阅读
近几年,随着社会对节能需求的增加以及全球对能源危机的关注,开发低热导率的绝热材料至关重要。中空结构材料因其独特的空心结构在绝热领域具有巨大的应用潜能。由于内部存在高孔隙率,气孔会破坏热量传递路径的连续性,延长传热路径,同时将热传导转化为热对流,可以有效地提高材料的绝热性,从而有助于减轻日益严重的能耗。单分散中空纳米二氧化硅组成的中空结构材料,原料低廉、工艺简单,在建筑领域具有绝热潜力。本论文针对目前中空纳米二氧化硅研究中存在的低产率、高能耗、热导率不理想等问题,从材料组成、合成工艺参数和结构设计方面开展新型中空二氧化硅纳米绝热材料的制备与性能研究。通过无皂乳液聚合法制备了140~575 nm的聚苯乙烯(PS)球,作为后续实验的牺牲模板。采用硬模板法,以TEOS和Na2Si O3分别作为硅源,探究两种硅源合成单层中空纳米二氧化硅的最佳工艺。实验结果显示,TEOS制备的单层中空纳米二氧化硅(HSN-T)内径在120~310 nm可调控,壳厚度为16~29 nm,壳结构呈覆盆子状或光滑状;Na2Si O3可制备出内径在112~271 nm之间,壳厚约为10~15 nm的圆形蜂窝状单层中空纳米二氧化硅(HSN-N),球体之间存在部分固体连接。对比了两种工艺制备中空纳米二氧化硅的孔结构、产率、能耗和热学性能的差异。HSN-T的最大比表面积为182.16 m2·g-1,平均产率为9.54%;HSN-N的最大比表面积为766.25 m2·g-1,平均产率可以高达93.75%,约为HSN-T产率的10倍。选用Hot Disk热导仪测试中空二氧化硅粉末的热导率,HSN-N的热导率在0.0403~0.0610 W·m-1·K-1之间,低于同尺寸结构的HSN-T的热导率。通过对产率、成本和能耗计算分析,以Na2Si O3作为硅源可以解决TEOS合成过程中低产率、高成本的问题,有望成为绿色、低能耗的硅源原料。进一步将HSN掺入丙烯酸酯涂料中制备复合涂层,结果证实HSN可以有效降低涂层的热导率。通过设计双层中空结构,调节不同的工艺参数成功合成了蛋黄-蛋壳型和双环型的不同双层结构。结果显示,蛋黄-蛋壳型中空二氧化硅形貌呈花瓣状,壳层间距在20~290nm,内核尺寸影响材料的比表面积,具体关系为:32.61 m2·g-1(100 nm)>22.66 m2·g-1(200 nm)>13.65 m2·g-1(600 nm)。双环型中空二氧化硅以自制的HSN-T为内核基体,引入DVB交联剂增加聚合物的交联程度,成功制备了层间距为18 nm和35 nm的双环型结构,其比表面积分别为59.81 m2·g-1和61.63 m2·g-1。通过测试蛋黄-蛋壳型和双环型中空二氧化硅的热导率,证实减小层间距离可以有效降低材料热导率。双环型结构的热导率可低至0.0252 W·m-1·K-1,远低于单层结构的热导率,而蛋黄-蛋壳型结构由于具有实心内核,热导率数值略高于单层结构。