基于光纤端面复合微纳结构材料的超快脉冲激光产生

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:raclen4hy00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属/金属化合物、介质微纳结构、二维(Two-dimensional,2D)材料等先进材料与光纤复合形成的光纤型微纳器件,成为近年来研究的热点领域之一。目前,标准的微纳结构平面制备技术不仅需要昂贵的仪器设备、耗时,而且受限于“根-根”制造,导致产率较低。因而,本文提出了一种高效的光纤微纳材料制备技术,并探索在超快光纤激光产生方面的应用。本文主要研究三种不同材料与光纤端面(Optical Fiber Tip,OFT)的复合制备,并作为可饱和吸收体(Saturable Absorber,SA)应用到被动调制光纤激光器中,分析和研究其不同激光脉冲产生特性。具体研究内容如下:1.等离子激元氮化钛纳米颗粒(Titanium Nitride Nanoparticles,Ti N NPs)的被动锁模应用:采用滴注法制备Ti N薄膜,将其作为SA插入掺铒光纤激光器(Erbium-doped Fiber Laser,EDFL)环形腔内,通过先进的色散傅里叶技术观察到两种状态下的脉冲演化和动力学过程:锁模和调Q锁模(Q-switched mode-locking,QS-ML)。并且在QS-ML状态下发现实时演化的脉冲光谱的“呼吸”频率与调Q脉冲规律的周期性变化相对应。2.基于六方氮化硼薄膜(Hexagonal Boron Nitride,h BN)薄膜材料的SA的制备及被动调Q应用:首先利用自沉降的方法将漂浮在水/空气界面处的单层氮化硼薄膜成功地转移至OFT上,然后将2D h BN作为SA在环形EDFL腔内实现了被动调Q,在泵浦功率从45.1 m W至203.9 m W(输出功率从0.325增加至2.25 m W)变化下,输出了重复频率从29.41 k Hz增到55.5 k Hz的调Q脉冲。3.光纤端面金三角阵列结构SA的制备及其光调制应用:发展和改进了在OFT上基于Langmuir-Blodgett自组装纳米球掩模刻印技术制备高质量、大面积的金三角阵列结构,这一制造技术成本低,产率高,实验中多达36根功能化光纤可以被同时制造。研究发现利用不同尺寸聚苯乙烯纳米小球制造的金三角结构在线性透射光谱中展现了高度可调的等离激元共振和非线性透射光谱中较大的调制深度(最大值:11.5%)。进一步实验研究发现,当金三角阵列结构的等离激元共振峰靠近1.5μm,首次成功实现了基于金三角阵列结构SA的皮秒级脉宽(~3.7 ps)、高功率(>10 m W)的锁模脉冲激光输出,其信噪比达到近50 d B。此研究为高效制备功能化光纤、降低制造成本提供了新的思路,也为研究全光纤高功率的超快脉冲激光的产生提供新的实验体系。
其他文献
在无线频谱资源日益紧缺的时代背景下,无线通信系统正朝向小型化、多频段、多功能和智能化等方向发展,对硬件的要求也越来越高。单纯依靠增加微波器件与天线的个数显然无法满足日益复杂的通讯环境和不断膨胀的业务需求。为了克服这一瓶颈,可重构技术应运而生。可重构技术旨在使用单个组件集成多种功能,满足系统的多样化需求。天线和馈电网络作为可重构技术的重要载体,是可重构技术研究关键方向。本文围绕频率可重构天线和功能可
学位
在加快推进“健康中国”建设的新形势下,开展公立中医院高质量发展助力“健康中国”战略研究,关乎医疗卫生事业发展水平,关乎人民群众安全感、获得感、幸福感的提升成效。当前,公立中医院高质量发展面临党的建设存在薄弱环节、医院管理制度有待健全、创新引领发展不够等问题。在全面建设社会主义现代化国家的新征程中,公立中医院要加强党的建设,以高质量党建引领高质量发展;要健全现代医院管理制度,提升高质量发展新效能;要
期刊
随着5G时代的来临,无线通信技术快速发展,频谱资源的合理利用也变得尤为重要。5G毫米波频段的应用是5G技术发展的主流方向,同时也是当下一大挑战。毫米波信号的传输易受环境影响,因此5G系统对毫米波滤波器性能提出更高要求,其中包括低损耗,高匹配,良好选择性,高百分比带宽等。当下毫米波滤波器体积仍旧偏大,无法满足手机等移动设备的内部空间要求,因此针对可移动手持设备的应用,小体积高性能滤波器的研究既是一大
学位
铁电薄膜具备优异的介电、压电、热电性能,普遍应用于存储器、传感器、探测器等电子器件中,为了提高铁电器件的稳定性和集成度,则需充分发挥铁电薄膜材料的物理性能,其中应变和取向工程作为调控铁电薄膜性能的重要手段,可以有效提高铁电薄膜的介电、压电性能,因此铁电薄膜的应变和取向工程受到广泛关注。本文基于唯象非线性热力学理论系统研究了不同晶体取向下铁电薄膜在外场作用下的性能变化。首先根据欧拉角转动规则得到(1
学位
有机光电材料作为新材料的代表,在平板显示与集成电路等战略性新兴产业中发挥着至关重要的作用。得益于其自身具有的柔性、易加工性、刺激响应性等特点,有机光电材料被广泛应用于有机发光二极管(OLEDs)、有机场效应晶体管(OFETs)、有机太阳能电池(OSCs)、化学与生物传感器及防伪标签。迄今为止,研究人员基于多样的分子设计策略,已经开发了许多光电性能优异的有机光电材料。在这其中,有机共振半导体材料在调
学位
天线是射频系统最重要的部分之一,承担整个系统收发电磁波的任务,可以说天线“能不能用”、“好不好用”,对整个射频系统的性能有很大的影响。传统设计中,天线与上级电路之间需通过连接器连接。连接器体积大,引入了不必要的损耗,导致系统阻抗牵引,可以说导致了众多问题。在低频段,上述问题尚不十分明显,然而目前新兴需求不断出现,高频段、线已成为研究重点,随着频率的增高,空间利用率低、损耗大等问题已经无法忽视,对天
学位
随着科学技术的发展,人们对于信息的需求量和处理速度都有着越来越高的要求,以电子作为载体的电路器件已经很难满足,因此无源器件成为当下的研究热点,其中分束器是无源器件中的基本器件之一。光子晶体作为一种新型材料,因其独特的禁带特性和局域特性,成为制作分束器的重要材料之一,吸引了国内外很多研究者的关注,本文利用光子晶体的基本特性设计了一种1×5等比分束器和光控分光比可调1×4太赫兹波分束器。具体工作如下:
学位
随着人工智能、虚拟现实、物联网等应用的快速崛起,移动网络、大数据分析、云计算等新技术飞速发展,数据使用量急剧暴涨,进一步提高信息传输容量和速度是目前最为迫切的需求。而目前对单元器件的研究已趋近成熟,利用硅基光电子集成技术将多种单一功能元件集成到同一芯片上,实现光电子器件小型化和多功能化,已成为目前颇具发展前景的研究方向。电光调制器和模分复用器作为光通信系统的重要单元器件,将二者集成,可以减小器件尺
学位
随着6G网络的发展,光通信系统对于传输容量的需求持续增加。为了进一步提高光通信系统的容量,光通信网络使用了多种复用系统来扩大容量,模分复用系统便是其中之一。调制器与模分复用器作为模分复用系统的关键器件,目前正向着小体积化方向发展,光通信系统器件也正朝着集成化方向发展。为了实现这些目标,硅基光电子集成技术是最佳的实现途径。硅基光电子集成采用CMOS工艺,把光子器件和光电子器件集成在由二氧化硅作为衬底
学位
过渡金属硫化物(TMCs)特殊的物理化学性质使其在能源催化、光电器件、生物医药等诸多领域吸收了广泛的关注。铁基硫化物不仅具有TMCs常见的比表面积大、近红外吸收强、生物毒性低等优势,还具有突出的磁、光、催化性能等,已被广泛应用于抗菌、生物传感、生物成像、肿瘤治疗等领域,成为了近年来低维功能材料领域研究的热点。本文我们采用一步水热合成法制备了FeS超小纳米点,然后进一步通过构建异质结构和复合纳米药物
学位