论文部分内容阅读
随着核工业的高速发展,核材料在服役期间的安全性成为人们普遍关注的问题。316LN奥氏体不锈钢(316LN austenitic stainless steel,316LN SS)因优良的综合性能被广泛用于制造核反应堆的结构件,但在恶劣的服役环境中它仍会发生严重的失效,如应力腐蚀、辐照肿胀、辐照促进应力腐蚀等。材料的辐照损伤与腐蚀失效一般始于材料的表面。316LN SS在服役过程中的腐蚀失效与辐照损伤主要与其表面形成的钝化膜特性和辐照缺陷吸收“阱”密度相关。理论上来说,利用纳米化技术在材料上由表及内的制备一定厚度的梯度纳米结构层,优化材料的表层组织结构,即可大幅度提高它的综合服役性能。本文使用旋转加速喷丸(rotating accelerated shot peening,RASP)方法实现316LN SS的表面纳米化,研究喷丸过程中材料的组织结构及力学性能演变规律;分析材料的纳米层厚度、晶粒尺寸、晶界特性、表面粗糙度等微观组织变化对其抗辐照及耐腐蚀性能的影响机理;揭示纳米晶晶界、孪晶界等与辐照缺陷、钝化膜之间的作用关系。涉及的主要内容和结论如下:(1)研究了 RASP处理对316LN不锈钢组织结构的影响。RASP处理后,316LN SS试样表面状态良好,无明显裂纹产生。随着喷丸时间的延长,试样的变形层厚度持续增加,XRD衍射峰不断宽化,晶粒尺寸显著细化。RASP处理15 min后,试样的近表层平均晶粒尺寸降至30 nm,纳米压痕硬度从表面到基体呈梯度减小趋势,从5.06 GPa逐渐稳定在3.24 GPa左右。316LN SS试样的塑性变形和晶粒细化过程主要包括:粗晶中形变孪晶和位错的生成、孪晶和位错的交互作用、超细晶中孪晶的退化和孪晶分割等。(2)观察了纳米晶晶界和孪晶界对辐照缺陷的作用效果,建立了辐照氦泡与316LN SS试样力学性能之间的关系。RASP处理在316LN SS试样表面引入了高密度位错和晶界,提高了材料的表面硬度及均匀性,避免了辐照导致的晶面择优取向。随着辐照剂量的增加,试样的硬度呈现先增加后降低的变化趋势,最终出现反常的辐照软化现象。分析结果表明,在剪切力的作用下,辐照生成的高密度、大尺寸氦泡会粗化、聚集,连接形成滑移带或剪切带,导致材料的软化、失效。高密度位错及孪晶晶界抑制了氦泡的生成与长大,延缓了辐照剪切带及辐照软化现象的出现,提高了材料的力学稳定性。(3)阐明了纳米结构316LN SS的抗腐蚀作用机理。在消除表面缺陷的影响因素后,随着RASP处理时间的延长,316LN SS试样的自腐蚀电位、点蚀电位和钝化膜电阻升高,自腐蚀电流密度和载流子密度降低,材料的耐腐蚀性能显著增强。RASP在316LN SS试样表面制备的纳米晶与孪晶有利于试样表面生成均匀、致密、耐蚀性氧化物富集的钝化膜。高密度晶界增加了钝化膜的形核点,降低了钝化膜形成所需的形核功和扩展功,提高了钝化膜与纳米结构衬底之间的粘附力。(4)确定了梯度纳米结构316LN SS试样的最佳耐腐蚀区及其对应的微观组织特征。RASP处理15 min并冷轧后,316LN SS试样表面形成了厚度约为210 μm的梯度结构层,此结构层中距表面110μm的区域基本不存在喷丸导致的缺陷,同时又兼有纳米组织结构特征,耐蚀性能最佳。试样110μm层纳米结构处生成的钝化膜较为平直,厚度可达13.9 nm。喷丸产生的微孔会增加钝化膜的应变能,在应力松弛过程中,钝化膜会被拉伸、变薄,甚至裸露出基体,成为腐蚀过程中的薄弱点。(5)在模拟压水堆一回路主管道环境中,研究了 RASP对316LN SS表面氧化膜成分和耐蚀性的影响。结果表明,RASP并未改变316LN SS试样表面氧化膜的成分,但纳米化同样促进了氧化膜的成核与生长。随着RASP处理时间的延长,试样表面生成的氧化膜外层氧化物颗粒密度和尺寸增大,内层Cr2O3含量增加。RASP处理10 min试样的表面氧化膜电阻较高,自腐蚀电位和自腐蚀电流密度均较小,氧化膜的综合耐腐蚀性能较好。