【摘 要】
:
逆向调制(MRR)自由空间光通信(FSO)系统是一种基于逆向反射器的非对称FSO系统,既避免了传统无线射频通信系统面临的频谱资源紧张、传输速率及安全保密性不够高的问题,又能克服传统FSO系统终端功耗大、体积大的缺点。然而,MRR FSO通信需要在大气信道中进行往返两次传输,会受到两倍大气湍流的影响,带来更加严重的光束漂移及光强闪烁等光学畸变现象,从而降低系统的稳定性和可靠性。因此,为了进一步提高M
论文部分内容阅读
逆向调制(MRR)自由空间光通信(FSO)系统是一种基于逆向反射器的非对称FSO系统,既避免了传统无线射频通信系统面临的频谱资源紧张、传输速率及安全保密性不够高的问题,又能克服传统FSO系统终端功耗大、体积大的缺点。然而,MRR FSO通信需要在大气信道中进行往返两次传输,会受到两倍大气湍流的影响,带来更加严重的光束漂移及光强闪烁等光学畸变现象,从而降低系统的稳定性和可靠性。因此,为了进一步提高MRR FSO系统性能,本文主要研究微角反射器阵列(MCCRA)对双程大气湍流的相位补偿以及对应的信道特性,具体内容如下:首先,本文阐述了MRR FSO系统的研究背景和意义,以及当前MRR FSO相位补偿技术及信道模型的研究现状。针对MRR FSO系统的双程大气信道,概括性介绍了大气湍流形成的原理以及Kolmogorov湍流理论和Rytov近似理论。然后具体介绍了基于MCCRA的MRR FSO系统结构,并且对MCCRA的物理模型和反射特性展开描述。为了更好研究课题内容,故采用数值计算的方法来模拟MRR FSO系统,通过分步光传输法模拟光束在大气湍流中的传播过程。其次,针对基于MCCRA的MRR FSO系统,由理论推导证明了MCCRA能够对双程大气湍流带来的扰动相位进行有效补偿,并通过数值仿真具体对比了基于MCCRA和基于角反射器(CCR)的MRR FSO系统性能指标。基于MCCRA的MRR FSO系统的闪烁指数(SI)更小、斯特列尔比(SR)更高,更大的MCCRA反射孔径、更小的单元尺寸可以提高对双程大气湍流的相位补偿效果,并且在光束倾斜入射、存在加工误差、增大传输距离的情况下MCCRA也能起到相当有效的补偿作用。此外,在室内及室外分别进行了相关的实验测试,所得测试结果验证了理论与仿真结论的正确性和可行性。最后,本文分析了基于MCCRA的MRR FSO系统的信道模型,对双程信道以及前后向分离信道的仿真数据进行数值拟合。相比Gamma-Gamma分布模型,在弱到强湍流条件下Lognormal分布可以更好地描述该信道模型,这也印证了MCCRA对大气湍流的有效补偿效果。另一方面,随着MCCRA反射孔径的增大,其后向散射增强(EBS)效应越明显,且EBS增强因子随湍流强度增大而增大,可见即使在强湍流条件下MCCRA对双程大气湍流仍能起到有效的相位补偿。
其他文献
随着通用人工智能技术的发展,传统的冯·诺依曼计算架构遇到了诸多瓶颈,探索一种能够加速处理海量数据的全新计算架构成为了当今世界的一项重大课题。研究发现,受脑科学启发的类脑计算架构在高效率计算、高复杂度问题求解、低功耗计算等方面具有极大的发展潜力。而在类脑计算架构中,最为重要的组成部分便是低功耗、高性能的神经元和突触器件,此类神经形态计算器件在构建新型类脑计算芯片方面具有极大的需求。本文围绕自旋电子学
合成孔径雷达(Synthetic aperture radar,SAR)作为一种具有高穿透性的微波雷达,可在极端气候条件下实现高质量的静止场景成像,在电子侦察和目标姿态感知等领域被广泛应用。地面运动目标指示(Ground Moving Targets Indication,GMTI)技术在SAR系统中的成功应用,消除了传统SAR无法监测高信息量运动目标的弊端。鉴于SAR-GMTI系统优秀的目标监测
合成孔径雷达(Synthetic Aperture Radar,SAR)是一种微波遥感雷达,其原理是通过雷达与目标的相对运动合成出一个比实际天线孔径更大的虚拟孔径,将虚拟孔径中点目标的回波信号进行相干积累,通过成像算法对数据进行处理,最终形成一张高分辨率SAR图像。由于SAR对地观测具备抗雨雪、尘雾等复杂气象的优势,且能够维持长时间稳定工作,所以被大量应用于军事及民用领域。将SAR与卫星等载体结合
目前,随着5G物联网(Io T)技术的快速发展,作为其关键技术的无线传感器网络(WSN)研究受到广泛关注。对于诸多WSN应用场景,降低系统能耗和提高信号传输可靠性是首要问题。为此,本文主要开展了针对WSN的多中继编码选择译码转发(SDF)协作技术研究。首先,提出了协作通信多中继节点SDF及对应的功率分配方法,以降低中断几率。随后,提出了结合极化码编码技术得SDF中继通信方法,以提高信号传输可靠性。
煤炭在能源领域充当着重要的角色,我国每年煤炭消费巨大,煤炭的高效利用对我国的社会经济发展和改善民生有重要价值。现阶段火电厂主要以燃烧煤粉作为发电方式,优化制粉系统变得至关重要。然而制粉系统内部运行状态难以做准确地实时监测,利用火力发电厂制粉系统的可操作参数和煤质参数来建立制粉系统煤粉细度和磨煤机电流大小的预测模型就成为了一种可行的方法。本文以HP983型磨煤机作为研究对象,在河南平顶山某电厂的#5
电子战(EW)也称为电子对抗,是敌对双方争夺战场电磁频谱的斗争,电子对抗技术是当代信息化战场上十分关键的作战力量之一。其中,电子侦察中的检测与估计技术是电子战成功实施电子攻击和防护的首要任务和先决条件。然而,随着军事电子信息技术的快速发展,战场电磁频谱呈现动态、多变、密集、复杂等特征,给传统的检测与估计方法带来了前所未有的挑战。与此同时,深度学习技术快速发展,其相关技术在电子对抗中的应用也成为了当
无论是在家庭还是学校,每天都发生着许许多多的小事,一个眼神、一句话语、一个手势等都可能对孩子产生莫大的影响。教育现象学就是一门探讨成年人与孩子如何相处的学问,回答“对于这个孩子,此时此刻我该怎么做才是最好的”。然而,所谓此时此刻的正确反应往往不是周密思考的结果,而是取决于教师感知学生的敏感性。教育不是教知识,
路径寻优是一种较为经典的优化问题,其主要内容是通过智能优化算法合理规划出一条从起始地到目标地的最优路径。群智能优化算法(Swarm Intelligence,SI)是一种新兴的元启发式技术,具有原理简单、易实现等特点。近年来,出现了许多新颖的SI算法,例如哈里斯鹰优化算法(Harris Hawks Optimization,HHO)。HHO算法是受哈里斯鹰捕食行为启发而提出的一种新的SI算法,具有
由于信号中的信息存在一定的冗余,假使根据奈奎斯特采样率对信号进行采样,会造成带宽不可避免的“浪费”,同时还可能增加信号采集、处理方面的设备成本。而假设信号存在一定稀疏性的情况下,根据压缩感知理论,信号可以先经过一定的测量过程而实现压缩。测量过程中,信号的采样率可以远低于其奈奎斯特采样率。因此可以说压缩感知一定程度上“突破”了奈奎斯特采样定律对模数转换的限制,针对通信领域中载波频率不断提高的现状,压
大规模多输入多输出(Massive Multiple-Input Multiple-Output,Massive MIMO)自问世以来,以其分集增益和空间增益特性,被广泛应用在网络需求大的场景中。随着技术的变革,通信设备数目快速增长,基站集成的天线数量也随之增加,这就导致了整个系统的功耗巨大。因此,如何降低系统功耗,发展绿色通信已经成为当今研究的热点。在此背景下,本文针对大规模MIMO系统的能效优